[1]
Li YuanBin, Li JianWei. Gabor wavelet algorithm based on fingerprint image preprocessing[J]. Automation & Instrumentation. 2004, 113(3): 51-53.
Google Scholar
[2]
Sun YanKui. Wavelet analysis and its application[M]. BeiJin: china machine press. (2005).
Google Scholar
[3]
LIU D H , LAM KM, SHEN L. Optimal Sampling of Gabor Features for Face Recognition [J ] . Pattern Recognition Letters , 2004 , 25 (2) : 267 - 276.
DOI: 10.1016/j.patrec.2003.10.007
Google Scholar
[4]
WANG XW, DINGXQ , LIU C S. Gabor Filters2Based Feature Extraction for Character Recognition [J ] . Pattern Recognition , 2005 , 38 (3) : 369 - 379.
DOI: 10.1016/j.patcog.2004.08.004
Google Scholar
[5]
QiuShiKeJi. Visual C++ Typical digital image processing algorithm and implementation[M]. Posts & Telecom Press. (2006).
Google Scholar
[6]
WuGaoHong, ZhangLiuJin, LinXingGan. The best two-texture image segmentation Gabor filter design method[J]. Chinese Journal of Electronics , 2001 , 29 (1) : 48 - 50.
Google Scholar
[7]
FuYiPing, Li ZhiNeng. Yuan Ding. based on optimization edge detection of Gabor filter design[J]. Computer Aided Design and Computer Graphics Journal, 2004, 16(4): 481—486.
Google Scholar
[8]
Bodnarova A, Bennamoun M, Latham S. Optimal Gabor filters fortextile flaw detection [J]. Pattern Recognition, 2002, 35 (12): 2973 —2991.
DOI: 10.1016/s0031-3203(02)00017-1
Google Scholar
[9]
Tsai D M , W u S K. Automated surface inspection using Gaborfilters [J]. The International Journal of Advanced ManufacturingTechnology, 2000, 16(7): 474—482.
Google Scholar
[10]
The Science of Fingerprint s : Classification and Uses [M] , United States Department of J ustice , Federal Bureau of Investigation , Washington , DC , rev. (1998) 12 - 84 Figure 1 Figure 3 Figure 2 Figure4.
Google Scholar