Synthesis and Characterization of CuInS2 and CuInSe2 Compounds by Vacuum Sintering Method

Article Preview

Abstract:

We report herein synthesis and characterization of CuInS2 and CuInSe2 compounds by vacuum sintering method. In this study, the manual-milled and ball-milled precursors including copper, indium, and sulfur (selenium) elements were sintered under vacuum at different temperatures for synthesis of CuInS2 and CuInSe2 compounds, respectively. The crystal structure, morphology and Raman property of the sintered powder were investigated by X-ray diffraction, scanning electron microscope and Raman scattering spectroscopy, respectively. The results show that the structure of the products, which was sintered with the manual-milled and ball-milled precursors, were transformed into the single chalcopyrite phase CuInS2 powder at 923K and 623K, and the grain size are about 2~3μm and 250 nm, respectively. In addition, the CuInSe2 powder was synthesized about 723K via using the ball-milled powder including copper, indium, and selenium elements as the precursor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-123

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.P. Matthew, A. Vahid, G. Brian, P.S. Johanna, D. Lawrence, D. Ananth, F.B. Paul, A.K. Brian: J. Am. Chem. Soc. Vol. 130 (2008), pp.16770-16777.

Google Scholar

[2] G. Norsworthy, C.R. Leidholm, A. Halani, V.K. Kapur, R. Roe, B.M. Basol, R. Matson: Sol. Energy Mater. Sol. Cells Vol. 60 (2000), pp.127-134.

DOI: 10.1016/s0927-0248(99)00075-6

Google Scholar

[3] S.Y. Lee, K.H. Kim, B.O. Park: Thin Solid Films 516 (2008), pp.4709-4712.

Google Scholar

[4] D.P. Dutta, G. Sharma: Mater. Lett. Vol. 60 (2006), pp.2395-2398.

Google Scholar

[5] S.G. Peng, F.Y. Cheng, J. Liang, Z.L. Tao, J. Chen: J. Alloys Compd. Vol. 481 (2009), pp.786-791.

Google Scholar

[6] M. Mobarak, H.T. Shaban, A.F. Elhady, Mater. Chem. Phys. Vol. 109 (2008), pp.287-290.

Google Scholar

[7] Y. Akaki, H. Komaki, K. Yoshino, T. Ikari: J. Vac. Sci. Technol. A Vol. 20 (2002), pp.1486-1487.

Google Scholar

[8] Y. Akaki, H. Komaki, K. Yoshino, T. Ikari: J. Mater. Sci. Mater. Electron. Vol. 14 (2003), pp.291-294.

Google Scholar

[9] M.K. Agarwal, P.D. Patel, S.H. Chaki, D. Lakshminarayana: Bull. Mater. Sci. Vol. 21 (1998), pp.291-295.

Google Scholar

[10] M. Zribi, M. Kanzari, B. Rezig: Mater. Lett. Vol. 60 (2006), pp.98-103.

Google Scholar

[11] H. Komaki, K. Yoshino, S. Seto, M. Yoneta, Y. Akaki, T. Ikari: J. Crystal Growth Vol. 236 (2002), pp.253-256.

DOI: 10.1016/s0022-0248(01)02133-9

Google Scholar

[12] Y. Akaki, H. Matsuo, K. Yoshino : Phys. Stat. Sol. C Vol. 3 (2006), pp.2597-2600.

Google Scholar

[13] J. Alvarez-García, A. Pérez-Rodríguez, B. Barcones, A. Romano-Rodríguez, J. R. Morante, A. Janotti, S.H. Wei, R. Scheer : Appl. Phys. Lett. Vol. 80 (2002), pp.562-564.

DOI: 10.1063/1.1435800

Google Scholar

[14] M. Ishii, K. Shibata, H. Nozaki: J. Solid State Chem. Vol. 105 (1993), pp.504-511.

Google Scholar

[15] W.H. Koschel, M. Bettini: Phys. Status Solidi (b). Vol. 72 (1975), pp.729-737.

Google Scholar

[16] V. Izquierdo-Roca, A. Shavel, E. Saucedo, S. Jaime-Ferrer, J. Álvarez-García, A. Cabot, A. Pérez-Rodríguez, V. Bermudez, J.R. Morante: Assessmen to fabsorber composition and nanocrystalline phases in CuInS2 based photovoltaic technologies by ex-situ/in-situ resonant Raman scattering measurements Sol. Energy Mater. Sol. Cells (2011).

DOI: 10.1016/j.solmat.2010.11.014

Google Scholar

[17] J. Álvarez-García, B. Barcones, A. Pérez-Rodríguez, A. Romano-Rodríguez, J. R. Morante, A. Janotti, Su-Huai Wei, R. Scheer: Phys. Rev. B. Vol. 71 (2005), p.54303.

Google Scholar