The Effect of Varying Degrees of Radial Meniscal Tears on the Knee Contact Stresses: A Finite Element Analysis

Article Preview

Abstract:

Knee osteoarthritis (OA) is believed to result from high levels of the contact stresses on the cartilages and menisci after radial meniscal tears but not clearly proved. This research investigated the effect of varying degrees of radial meniscal tears on the peak compressive and shear stresses in the knee joint. An elaborate three-dimensional (3D) knee finite element (FE) model was developed from CT (computerized tomography) and MRI (magnetic resonance imaging) images. This model was used to model varying degrees of radial meniscal tears (involving 0%-90% radial width of the medial meniscus). Two different conditions were compared: a healthy knee joint and a knee joint with meniscal tears. The peak compressive and shear stresses were found in the posterior region of the medial meniscus and the corresponding zone of the cartilage, and they increased with the increasing width of radial tears. After meniscal tear involving 90% radial width, the peak compressive and shear stresses got their highest values. It shows that meniscal tear greater than 40% radial width drastically increases the contact stresses in the knee joint.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-141

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.M. Ahmed: J Biomech Eng Vol. 105 (1983), pp.309-314.

Google Scholar

[2] I.D. McDermott and A.A. Amis: J Bone Joint Surg Br Vol. 88 (2006), pp.1549-1556.

Google Scholar

[3] K. Messner and J. Gao: J Anat Vol. 193 (1998), pp.161-178.

Google Scholar

[4] D.J. Hunter, Y.Q. Zhang, J.B. Niu, et al: Arthritis Rheum Vol. 54 (2006), pp.795-801.

Google Scholar

[5] L. Sharma, F. Eckstein, J. Song, et al: Arthritis Rheum Vol. 58 (2008), pp.1716-1726.

Google Scholar

[6] A. Bedi, N.H. Kelly, M. Baad, et al: J Bone Joint Surg Am Vol. 92 (2010), pp.1398-1408.

Google Scholar

[7] M. Englund: Acta Orthop Scand Suppl Vol. 75 (2004), pp.1-45.

Google Scholar

[8] W. Wilson, B. van Rietbergen, C.C. van Donkelaar, et al: J Biomech Vol. 36 (2003), P. 845-851.

Google Scholar

[9] S.P. Vadher, H. Nayeb-Hashemi, P.K. Canavan, et al: Conf Proc IEEE Eng Med Biol Soc Vol. 1 (2006), pp.2098-2101.

Google Scholar

[10] B. Zielinska and T.L. Donahue: J Biomech Eng Vol. 128 (2006), pp.115-123.

Google Scholar

[11] N. Yang, H. Nayeb-Hashemi and P.K. Canavan: Ann Biomed Eng Vol. 37 (2009), pp.2360-2372.

Google Scholar

[12] E. Peña, B. Calvo, M.A. Martínez, et al: Clin Biomech Vol. 20 (2005), pp.498-507.

Google Scholar

[13] G. Li, O. Lopez and H. Rubas: J Biomed Eng Vol. 123 (2001), p.341–346.

Google Scholar

[14] J.R. Meakin, N.G. Shrive, C.B. Frank, et al: Knee Vol. 10 (2003), pp.33-41.

Google Scholar

[15] A.B. Nielsen and J. Yde: J Trauma Vol. 31 (1991), pp.1644-1648.

Google Scholar

[16] J.P. Smith 3rd and G.R. Barrett: Am J Sports Med Vol. 29 (2001), pp.415-419.

Google Scholar

[17] T.L. Donahue, M.L. Hull, M.M. Rashid, et al: J Biomech Eng Vol. 124 (2002), pp.273-280.

Google Scholar

[18] N.H. Yang, P.K. Canavan, H. Nayeb-Hashemi, et al: Comput Methods Biomech Biomed Engin Vol. 1 (2010), p.1.

Google Scholar

[19] J. A Weiss and J.C. Gardiner: Crit Rev Biomed Eng Vol. 29 (2001), pp.303-371.

Google Scholar

[20] S. Sathasivam and P.S. Walker: J Biomech Vol. 30 (1997), pp.177-184.

Google Scholar

[21] T. Fukubayashi and H. Kurosawa: Acta Orthop Scand Vol. 51 (1980), pp.871-879.

Google Scholar

[22] M.Z. Bendjaballah, A. Shirazi-Adl and D.J. Zukor: The knee Vol. 2 (1995), pp.69-79.

Google Scholar

[23] A. Chang, K. Moisio, J.S. Chmiel, et al: Ann Rheum Dis Vol. 70 (2011), pp.74-79.

Google Scholar