Facile Preparation of NiO/Ni Nanocomposite and its Electrochemical Capacitive Behaviors

Article Preview

Abstract:

NiO/Ni nanocomposites were prepared by chemically reduction-oxidation process in tetra-ethylene glycol (TEG) solution. The structure and morphology of the samples were examined by XRD and SEM. The results indicated the composite consisted of NiO and Ni and exhibited spherical morphology with diameter of 50-200 nm. The electrochemical performances of composite electrodes used in electrochemical capacitors were studied. The electrochemical measurements were carried out using cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy in 6M KOH aqueous electrolyte using three-electrode Swagelok systems. The results showed that the composite had a high specific capacitance and excellent capacitive behavior. The specific capacitance of the composite decreased to 192F/g after 500 cycles. Due to the existance of Ni, the charge transfer resistance is lower than 1Ω. It revealed that the composite exhibited good cycling performance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

134-138

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.E. Conway, J. Electrochem. Soc. 138 (1991) 1539-1548.

Google Scholar

[2] S. Sarangapani, B.V. Tilak, C.P. Chen, J. Electrochem. Soc. 143 (1994) 3791-3799.

Google Scholar

[3] J.P. Zheng, P.J. Cygan, T.R. Jow, J. Electrochem. Soc. 142 (1995) 2699-2703.

Google Scholar

[4] K.C. Liu, M.A. Anderson, J. Electrochem. Soc. 143 (1996) 124-130.

Google Scholar

[5] V. Srinivasan, J.W. Weinder, J. Electrochem. Soc. 144 (1997) L210-L212.

Google Scholar

[6] E.E. Kalu, T.T. Nwoga, V. Srinivasan, J.W. Weidner, J. Power Sources 92 (2001) 163-167.

Google Scholar

[7] K.W. Nam, K.B. Kim, Electrochem. 69 (2001) 467-472.

Google Scholar

[8] W. Xing,F. Li, Z.F. Yan, G.Q. Lu, J. Power Sources 134 (2004) 324-330.

Google Scholar

[9] F.B. Zhang, Y.K. Zhou, H.L. Li, Mater. Chem. Phys. 83 (2004) 260-264.

Google Scholar

[10] M. Wu, J. Gao, S. Zhang, A. Chen, J. Power Sources 159 (2006) 365-369.

Google Scholar

[11] J.W. Lang, L.B. Kong, W.J. Wu, Y.C. Luo, L. Kang, Chem. Commun. 35(2008) 4213-4215.

Google Scholar

[12] Y.Z. Zheng, H.Y. Ding, M.L. Zhang, Mater. Res. Bull. 44 (2009) 403-407.

Google Scholar

[13] G.H. Yuan, Z.H. Jiang, A. Aramata, Y.Z. Gao, Carbon 43 (2005) 2913-2917.

Google Scholar

[14] Q. Huang, X. Wang, J. Li, C. Dai, S. Gamboa, P.J. Sebastian, J Power Sources 164 (2007) 425-429.

Google Scholar

[15] J.Y. Lee, K. Liang, K.H. An, Y.H. Lee, Syn. Met. 150 (2005) 153-157.

Google Scholar

[16] K.W. Nam, K.H. Kim, E.S. Lee W.S. Yoon, X.Q. Yang, K.B. Kim, J Power Sources 182 (2008) 642-652.

Google Scholar

[17] M.S. Wu, H.H. Hsieh, Electrochim. Acta 53 (2008) 3427-3435.

Google Scholar

[18] X.M. Liu, X.G. Zhang, Electrochim. Acta 49 (2004) 229-232.

Google Scholar