Characterization of AB5-Type Metal Hydride Modified by Electroless Plating Nickel in Forming Process

Article Preview

Abstract:

Metal hydride (MH) alloy (MmNi3.81Mn0.41Al0.19Co0.76) is modified by the electroless nickel plating and used as the electroactive material of negative electrode in Ni/MH batteries. The effect of the concentrations of reductant (NaH2PO2×H2O), complex agent (Na3C6H5O7×2H2O), reaction time, and reaction temperature on the Ni loadings and the utilization of the modified MH are systematically studied. The experimental results reveal that the appropriate reaction time and temperature of electroless nickel plating are 30 min and 70 °C in this work. The loading amount of Ni-P on MH alloy is increased and decreased by increasing the concentration of reductant and complex agent, respectively. The steady utilization of unmodified MH alloy is 94.7±1.0 % in the forming process under the charge/discharge conditions of 0.2C charge to 160% SOC (state of charge) and 0.2C discharge to 0.95V. The utilization of MH alloys modified with conditions of [NaH2PO2×H2O] = 40 g L-1 and [Na3C6H5O7×2H2O] = 20 g L-1, T = 70 °C, t = 30 min and [MH] = 2g/100 ml, respectively, is improved to 101.9±0.3 %.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

139-142

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Abu-Sharkh, R. J. Arnold, J. Kohler, R. Li, T. Markvart, J. R. Ross, K. Steemers, P. Wilson, R. Yao, Renewable and Sustainable Energy Reviews 10 (2006) 78-127.

DOI: 10.1016/j.rser.2004.09.013

Google Scholar

[2] M. A. Fetcenko, S. R. Ovshinsky, B. Reichman, K. Young, C. Fierro, J. Koch, A. Zallen, W. Mays, T. Ouchi, J. Power Sources 165 (2007) 544-551.

DOI: 10.1016/j.jpowsour.2006.10.036

Google Scholar

[3] M. Raju, M. V. Ananth, L. Vijayaraghavan, J. Alloy and Compounds 475 (2009) 664-671.

Google Scholar

[4] F. Feng, D. O. Northwood, Int. J. Hydrogen Energy 29 (2004) 955-960.

Google Scholar

[5] S. J. Choi, J. Choi, C. Y. Seo, C. N. Park, J. Alloys and Compounds 356-357 (2003) 725-729.

Google Scholar

[6] C. Deng, P. Shi, S. Zhang, Materials Chemistry and Physics 98 (2006) 514-518.

Google Scholar

[7] K. Manimaran, M. V. Ananth, M. Raju, N. G. Renganathan, M. Ganesan, G. Nithya, Int. J. Hydrogen Energy 35 (2010) 4630-4637.

DOI: 10.1016/j.ijhydene.2010.02.045

Google Scholar

[8] S. N. Jenq, H. W. Yang, Y. Y. Wang, C. C. Wan, J. Power Sources 57 (1995) 111-118.

Google Scholar

[9] M. S. Wu, H. R. Wu, Y. Y. Wang, C. C. Wan, J. Alloys and Compounds 302 (2000) 248-257.

Google Scholar

[10] S. N. Jenq, H. W. Yang, Y. Y. Wang, C. C. Wan, Materials Chemistry and Physics 48 (1997) 10-16.

Google Scholar

[11] M. S. Wu, H. R. Wu, Y. Y. Wang, C. C. Wan, Int. J. Hydrogen Energy 29 (2004) 1263-1269.

Google Scholar

[12] H. H. Law, B. Vyas, S. M. Zahurak, G.W. Kammlott, J. Electrochem. Soc. 143 (1996) 2596-2601.

Google Scholar

[13] T. Sakai, H. Ishikawa, K. Oguro, C. Iwakura, H. Yoneyama, J. Electrochem. Soc. 134 (1987) 558-561.

Google Scholar

[14] C. Iwakura, Y. Kajiya, H. Yoneyama, T. Sakai, K. Oguro, H. Ishikawa, J. Electrochem. Soc. 136 (1989) 1351-1355.

DOI: 10.1149/1.2096920

Google Scholar