Studies on Donor-Acceptor Substituted with Triphenylamine-Core Fluorescent Derivatives

Article Preview

Abstract:

A series of donor-acceptor (D-A) substituted with triphenylamine-core fluorescent derivatives have been synthesized via nucleophilic addition of Grignard reagent to 2,7-dibromo-9-fluorenone, CF3SO3H-promoted Friedel-Crafts reaction, Ullmann coupling reaction, and Pd-catalyzed Suzuki cross-coupling reaction in turn. Aromatic imide (N-phthalimide) group was firstly introduced as electron acceptor in the donor-π-acceptor (D-π-A) opto-electronic materials. Hole-injection capability of the fluorene derivatives were promoted by introducing 4-methyl-triphenylamine (MTPA) group at the 9-position. All these compounds present excellent solubility and thermal stability (with glass transition temperature of 191-279 °C), thermo gravimetric analysis (TGA) indicated that 5% or 10% weight losses occurred at about 415-463 °C or 427-498 °C respectively. The relationship of the solvent polarity or the conjugation length of the D-A structure with the luminescent properties has been studied by the UV-vis spectra and the fluorescent spectra. The CV data revealed that these fluorescent derivatives are possessed low-lying HOMO energy levels ranging from -5.19 to -5.37 eV and are exhibited strong blue-green luminance around 448-546 nm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

280-288

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Fuhrmann, J. Salbeck: MRS. Bull Vol. 28 (2003), p.354.

Google Scholar

[2] W.Y. Wong, G.L. Lu, K.H. Choi and Z.Y. Lin: Eur. J. Org. Chem. (2003), p.365.

Google Scholar

[3] L. Jing, M. Li and Z.S. Bo: Chem. Eur. J. Vol. 11 (2005), p.6930.

Google Scholar

[4] K.T. Wong, S.Y. Ku, Y.M. Cheng and S.M. Peng: J. Org. Chem. Vol. 71 (2006), p.456.

Google Scholar

[5] L.H. Xie, X.Y. Hou, C. Tang, Y.R. Hua and W. Huang: Org. Lett. Vol. 8 (2006), p.1363.

Google Scholar

[6] S.H. Lin, F. Li, S. Cheng, D. Z and F.W. Harris: Macromolecules Vol. 31 (1998), p. (2080).

Google Scholar

[7] D.J. Liaw, B.Y. Liaw, L. Li, J. Sillion, B. Mercier and R. Sekiguchi: Chem. Mater. Vol. 10 (1998), p.734.

Google Scholar

[8] M.H. Yi, W. Huang, B.J. Lee and K.Y. Choi: J. Polym. Sci. Part A: Polym. Chem. Vol. 37 (1999), p.3449.

Google Scholar

[9] C.P. Yang, C.W. Yu: J. Polym. Sci, Part. A: Polym. Chem. Vol. 39 (2001), p.788.

Google Scholar

[10] Q. Mi, L. Cao and M. Ding: Polymer Vol. 38 (1997), p.3663.

Google Scholar

[11] H.B. Zheng, Z.H. Wang: Macromolecules Vol. 33 (2000), p.4310.

Google Scholar

[12] J.H. Weisburger, E.K. Weisburger and F.E. Ray: J. Am. Chem. Soc. Vol. 72 (1950), p.4250.

Google Scholar

[13] R. Wu, J.S. Schmm, D.L. Pearson and J.M. Tour: J. Org. Chem. Vol. 61 (1991), p.6906.

Google Scholar

[14] D.S. Reddy, C.F. Shu and F.I. Wu: J. Polym. Sci. Part A: Polym. Chem. Vol. 40 (2000), p.262.

Google Scholar

[15] Y.H. Kim, D.C. Shin, S.H. Kim, C.H. Ko, H.S. Yu, Y.S. Chae and S.K. Kwon: Adv. Mater. Vol. 13 (2001), p.1690.

Google Scholar

[16] H.S. Kim, Y.H. Kim, S.K. Ahn and S.K. Kwon: Macromolecules Vol. 36 (2003), p.2327.

Google Scholar

[17] S. Setayesh, A.C. Grimsdale, T. Weil, V. Enkelmann, K. Mullen, F. Meghdadi, E.J. List and W.G. Leising: J. Am. Chem. Soc. Vol. 123 (2001), p.946.

DOI: 10.1021/ja0031220

Google Scholar

[18] C.C. Wu, T.L. Liu, W. Hung, Y. Y, T. Lin, K.T. Wong, R.T. Chen, Y.M. Chen and Y.Y. Chien: J. Am. Chem. Soc. Vol. 125 (2003), p.3710.

Google Scholar

[19] F.I. Wu, D.S. Reddy, C.F. Shu, M.S. Liu and A.K.Y. Jen: Chem. Mater. Vol. 15 (2003), p.269.

Google Scholar

[20] C.F. Shu, R. Dodda, F.I. Wu, M.S. Liu and A.K.Y. Jen: Macromolecules Vol. 36 (2003), p.6698.

Google Scholar

[21] W.L. Yu, J. Pei, W. Huang and A.J. Heeger: AdV. Mater. Vol. 12(2000), p.828.

Google Scholar

[22] T.C. Chao, Y.T. Lin, C.Y. Yang, T.S. Hung, H.C. Chou, C.C. Wu and K.T. Wong: AdV. Mater. Vol. 17 (2005), p.992.

Google Scholar

[23] Y.H. Kim, H.S. Kim and S.K. Kwon: Macromolecules Vol. 38 (2005), p.7950.

Google Scholar

[24] Q.G. Kong, D. Zhu, Y.W. Quan, Q.M. Chen, J.F. Ding, J.P. Lu and Y. Tao: Chem. Mater. Vol. 19 (2007), p.3309.

Google Scholar

[25] C. Ego, A.C. Grimsdale, T. Weil, V. Enkelmann and K. Müllen: Adv. Mater. Vol. 14 (2002), p.809.

Google Scholar

[26] D. Vak, J. Jo, J. Ghim, C. Chun, B. Lim, A.J. Heeger and D.Y. Kim: Macromolecules Vol. 39 (2006), p.6433.

DOI: 10.1021/ma060683o

Google Scholar

[27] Q. Fang, B. Xu, B. Jiang, H.T. Fu, W.Q. Zhu, X.Y. Jiang and Z.L. Zhang: Synth. Met. Vol. 155 (2005), p.206.

Google Scholar

[28] Q.F. Shu, R. Dodda, F.I. Wu, M.S. Liu and A.K.Y. Jen: Macromolecules Vol. 36 (2003), p.6698.

Google Scholar

[29] X.M. Liu, J.W. Xu, X.H. Lu and C.B. He: Org. Lett. Vol. 7 (2005), p.2829.

Google Scholar

[30] C. Zhang, Y.J. Zhang, M. Ouyang, Q.B. Song and C.A. Ma: Chem. Lett. Vol. 39 (2010), p.520.

Google Scholar

[31] C. Tang, F. Liu, Y.J. Xia, L.H. Xie, A. Wei, S.B. Li, Q.L. Fan and W. Huang: J. Mater. Chem. Vol. 16 (2006), p.4074.

Google Scholar

[32] K.T. Wong, Z.J. Wang, Y.Y. Chien and C.L. Wang: Org. Lett. Vol. 3 (2001), No. 15, p.2285.

Google Scholar

[33] R. Zbigniew, Grabowski and R. Krystyna: Chem. Rev. Vol. 103 (2003), p.3899.

Google Scholar

[34] M. Sukumaran, R. Wolfgang: J. Phys. Chem. A Vol. 110 (2006), P. 28.

Google Scholar

[35] J.I. Lee, G. Klaerner and R.D. Miller: Synth. Met. Vol. 101 (1999), p.126.

Google Scholar

[36] G. Zeng, W-L. Yu, S.J. Chua and W. Huang: Macromolecules Vol. 35 (2002), p.6907.

Google Scholar

[37] P.I. Saragi, Tobat, T. Spehr, A. Siebert, T.F. Lieker and J. Salbeck: Chem. Rev. Vol. 107 (2007), p.1011.

DOI: 10.1021/cr0501341

Google Scholar

[38] J. Salbeck, M. Schorner and T. Fuhrmann: Thin. Solid. Films Vol. 417 (2002), P. 20.

Google Scholar