Study on Novel Method to Measure Luminescence Time Interval Between the Initial and Terminal of Light Emission in Frequency Domain

Article Preview

Abstract:

In this paper, a novel method to measure the luminescence time interval between the initial and terminal of light emission in frequency domain is proposed. Under the condition that the time of excitation pulse is equal to the luminescence time interval between the initial and terminal of light emission, the energy of excitation is complete dynamically balanced by the light emission and the maximum luminescence intensity can be achieved. So the luminescence time interval between the initial and terminal of light emission can be expressed as (is the driving frequency which is corresponding to the maximum luminescence intensity). The luminescence time interval between the initial and terminal of light emission () of Alq3 (Tris-(8-quinolinolato)aluminum) is [s] measured using the novel method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

289-292

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. –T. Yu, W. J. Colucci, M. L. McLaughlin, M. D. Barkley, Fluorescence quenching in indoles by excited-state proton transfer, J. Am. Chem. Soc. 114(1992) 8449-8454.

DOI: 10.1021/ja00048a015

Google Scholar

[2] J. R. Bacon, J. N. Demas, Determination of oxygen concentrations by luminescence quenching of a polymer-immobilized transition-metal complex, Anal. Chem. 59(1987) 2780-2785.

DOI: 10.1021/ac00150a012

Google Scholar

[3] G. W. Robinson, Proton charge transfer involving the water solvent, J. Phys. Chem. 95(1991) 10386-10391.

DOI: 10.1021/j100178a027

Google Scholar

[4] C. Qu, Z. Xu, F. Teng, L. Qian, W. G. Yu, S. Y. Quan, X. R. Xu, Origin and characteristics of blue light emission in solid state cathodoluminescence of MEH-PPV, Chin. Phys. Lett. 21(2004) 552-555.

DOI: 10.1088/0256-307x/21/3/038

Google Scholar

[5] H. B. Nicolas, B. Annemie, A. C. B. José, Atomic spectroscopy, Anal. Chem. 76(2004) 3313-3336.

Google Scholar

[6] J. A. Williamson, M. W. Kendall-Tobias, M. Buhl, M. Seibert, Statistical evaluation of dead time effects and pulse pileup in fast photon counting Introduction of the sequential model, Anal. Chem. 60(1988) 2198-2203.

DOI: 10.1021/ac00171a007

Google Scholar

[7] R. J. Woods, S. Scypinski, L. J. Cline Love, H. A. Ashworth, Transient digitizer for the determination of microsecond luminescence lifetimes, Anal. Chem. 56(1984) 1359-1400.

DOI: 10.1021/ac00272a043

Google Scholar

[8] R. M. Ballew, J. N. Demas, An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays, Anal. Chem. 61(1989) 30-33.

DOI: 10.1021/ac00176a007

Google Scholar

[9] K. K. Sharman, A. Periasamy, H. J. Ashworth, N. Demas, N. H. Snow, Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes, Anal. Chem. 71(1999) 947-952.

DOI: 10.1021/ac981050d

Google Scholar

[10] S. P. Chan, Z. J. Fuller, J. N. Demas, F. Ding, B. A. Degraff, New method of rapid luminescence lifetime determination, Applied Spectroscopy 55(2001) 1245-1250.

DOI: 10.1366/0003702011953261

Google Scholar

[11] F. J. Zhang, Z. Xu, S. L. Zhao, Z. D. Lou, S. Y. Yang, X. R. Xu, Estimation of luminescence lifetime in frequency domain, Chinese Physic 15(2006) 526-530.

Google Scholar

[12] X. R. Xu, Solid state cathodoluminescence and the properties of its two emission peaks, J. Lumin. 122-123(2007) 593-596.

DOI: 10.1016/j.jlumin.2006.01.234

Google Scholar