High Quantum Efficiency Dependence on Structure Optimizatin for Gallium Nitride Photocathode

Article Preview

Abstract:

We optimized the gallium nitride(GaN)photocathode’s structure in three aspects for higher quantum efficiency. AlN is used to replace GaN as the buffer layer, which can act as potential barrier to reflect electrons back to surface. The optimal thickness of emission layer is calculated as 162.5nm, and considering the graded doping profile, we optimized the thickness as 180nm. Three built-in electric fields are introduced by Mg graded doping, and the intensities of the high fields are calculated to give the quantitive results of their influence on quantum efficiency. After surface cleaning and activation, quantum efficiency of the optimized sample was greatly increased and the highest value of 56% was achieved at 5.20eV. More quantum efficiency enchancement is possible by further optimizing the photocathode structure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

309-314

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Machuca, Z. Liu, Y. Sun, P. Pianetta, W. E. Spicer and R. F. W. Pease: J. Vac. Sci. Technol. B Vol. 21 (2003), p.1863.

Google Scholar

[2] O. Siegmund, J. Vallerga, J. McPhate, J. Malloy, A. Tremsin, A. Martin, M. Ulmer and B. Wessels: Nucl. Instrum. Meth. A Vol. 567 (2006), p.89.

Google Scholar

[3] S. Uchiyama,Y. Takagi, M. Niigaki and H. Kan: Appl. Phys. Lett. Vol. 86 (2005), pp.103511-1.

Google Scholar

[4] O. Siegmund, A. Tremsin, A. Martin, J. Malloy, M. Ulmer and B. Wessels: Proc. SPIE Vol. 5164 (2003), p.134.

Google Scholar

[5] M. Ulmer, B. Wessels, B. Han, J. Gregie, A. Tremsin and O. Siegmund: Proc. SPIE Vol. 5164 (2003), p.14.

Google Scholar

[6] J. Stock, G. Hilton, T. Norton, B. Woodgate, S. Aslam and M. Ulmer: Proc. SPIE Vol. 5898 (2005), p. 58980F-1.

Google Scholar

[7] Y.S. Qian B.K. Chang J.L. Qiao Y.J. Zhang R.G. Fu and Y.F. Qiu: Proc. SPIE Vol. 7481(2009), p. 74810H.

Google Scholar

[8] Z. Z. Bandic, P. M. Bridger, E. C. Piquette and T. C. McGill: Appl. Phys. Lett. Vol. 73 (1998), p.3276.

Google Scholar

[9] F. Machuca, Y. Sun, Z. Liu, K. Ioakeimidi, P. Pianetta and R. F. W. Pease: J. Vac. Sci. Technol. B Vol. 18(2000), 3042.

DOI: 10.1116/1.1321270

Google Scholar

[10] R. L. Bell, L. W. James and R. L. Moon: Appl. Phys. Lett. Vol. 25 (1974), p.645.

Google Scholar

[11] P. E. Gregory, J. S. Escher, S. B. Hyder, Y. M. Houng and G. A. Antypas: J. Vac. Sci. Technol. Vol. 15 (1978), p.1483.

Google Scholar

[12] T. J. Maloney, M. G. Burt, J. S. Escher, P. E. Gregory, S. B. Hyder and G. A. Antypas: J. Appl. Phys. Vol. 51 (1980), p.2879.

DOI: 10.1063/1.327956

Google Scholar

[13] Z. Yang, B. K. Chang, J. J. Zou, J. L. Qiao, P. Gao, Y. P. Zeng and H. Li: Appl. Opt. Vol. 46 (2007) , p.7035.

Google Scholar

[14] Y. J. Zhang, B. K. Chang, Z. Yang, J. Niu and J. J. Zou: Chin. Phys. B Vol. 18 (2009), p.4541.

Google Scholar

[15] Y. J. Zhang, B. K. Chang, Z. Yang, J. Niu, Y. J. Xiong, F. Shi, H. Guo and Y. P. Zeng: Appl. Opt. Vol. 48(2009), p.1715.

Google Scholar

[16] J. Niu, Z. Yang and B. K. Chang: Appl. Opt. Vol. 48 (2009), p.5445.

Google Scholar