Thermal and Thermo-Oxidative Degradations of Deproteinized Natural Rubber and Natural Rubber

Article Preview

Abstract:

Deproteinization of natural rubber was achieved in the latex stage. The structure of deproteinized natural rubber (DPNR) was characterized by fourier transform infrared spectroscopy (FTIR). The thermo degradation of DPNR was studied by thermogravimetry analysis (TG) under air atmosphere and nitrogen atmosphere. The kinetic parameters apparent activation energies (Ea) of the thermal decomposition reaction been calculated from the TG curves using the method described by Broido. And the results were compared with the thermo degradation of natural rubber (NR) under the same conditions. The effect of proteins in natural rubber latex on thermal/ thermo-oxidative stability of NR was discussed. The results show that: the absorptions of the proteins in DPNR at 1546 ㎝-1, compared to NR, become significantly weaker, nearly disappear, which indicates most of proteins has been removed from NR. The thermo degradation of DPNR in nitrogen atmosphere is a one-step reaction. The initial degradation temperature (T0) 、the maximum degradation temperature(Tp) and the final degradation temperature(Tf)as well as the Ea of DPNR are higher than those of NR, which indicates that DPNR represents a better thermal stability than NR under nitrogen atmosphere. Thermo-oxidative degradation of DPNR and NR are two-step reaction. The characteristic temperatures (T0, Tp and Tf) of DPNR are lower than those of NR. The Ea during the First Step of Thermooxidative Degradation of DPNR are also lower than those of NR. These results prove that the thermo-oxidative stability of DPNR is worse than that of NR. Protein is the key role to the thermal stability of natural rubber.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

50-57

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.F. Gazeley, A.D.T. Gorton, T.D. Pendle, Nat. Rubber Sci. Technol.,63, (1988).

Google Scholar

[2] P. Tangboriboonrat, C. Tiyapiboonchaiya, C.Lerthititrakul, Poly. Bull., 41,601, (1998).

Google Scholar

[3] J.W. Yunginger, R.T. Jones, A.F. Fransway, J.M. Kelso, M.A. Warner, L.W. Hunt, J. Allergy Clin. Immun., Vol. 93 (1994), p.836.

Google Scholar

[4] K. Turjanmaa, L. Laurila, S. Makinen-Kiljunen, T. Reunala, Contact Dermatitis, Vol. 19 (1988), p.362.

DOI: 10.1111/j.1600-0536.1988.tb02953.x

Google Scholar

[5] C. Morales, A. Basomba, J. Carreira, A. Sastre, Clin. Exp. Allergy, Vol. 19 (1989), p.425.

Google Scholar

[6] R. Rüssel-Fell, Internat. Conference. Vrije Universiteit, (1993).

Google Scholar

[7] A.H. Eng, Y. Tanaka, S.N. Gan, J. Nat. Rubber Res., Vol. 7 (1992), p.152.

Google Scholar

[8] A.H. Eng, S. Kawahara, Y. Tanaka, J. Nat. Rubber Res., Vol. 8 (1993), p.109.

Google Scholar

[9] Y. Yamamoto, P. TNghia, W. Klinklai, T. Saito, S. Kawahara, J. Appl. Polym. Sci., Vol. 107 (2008), p.2329.

Google Scholar

[10] K. Takahashi, W. Klinklai, S. Kawahara, Y. Isono, Polymer Preprints, Japan , Vol. 54 (2005), p.2508.

Google Scholar

[11] S. Kawahara, W. Klinklai, H. Kuroda, Y. Isono, Polym. Advan.Technol., Vol. 15 (2004), p.181.

Google Scholar

[12] P.A.J. Yapa, W.A. Lionel, J. Rubber Res. Inst. Sri Lanka, Vol. 56 (1979), p.41.

Google Scholar

[13] K.M. George, R. Alex, S. Joseph, K.T. Thomas J. Appl. Polym. Sci., Vol. 114 (2009), p.3319.

Google Scholar

[14] J.T. Sakdapipanich, T. Kowitteerawut, S. Tuampoemsab, S. Kawahara, J. Appl. Polym. Sci., Vol. 100 (2006), p.1875.

DOI: 10.1002/app.23335

Google Scholar

[15] P.Y. Wang, Y. Chen, H.L. Qian, J. Appl. Polym. Sci., Vol. 105 (2007), p.3255.

Google Scholar

[16] S. Tuampoemsab, J. Sakdapipanich. Einfluss von Nichtkautschuk-Komponenten auf das Alterungs-Verhalten von Gereinigtem Naturkautschuk, Vol. 61 (2008), p.363.

Google Scholar

[17] N. Rattanasom, U. Thammasiripong, K.Suchiva, J. Appl. Polym. Sci., Vol. 97 (2005), p.1139.

Google Scholar

[18] N.H. Yusof, S. Kawahara, M.M. Said., J.Rubber Res., Vol. 11 (2008), p.97.

Google Scholar

[19] S.A. Riyajan, Y. Tanaka, J.T. Sakdapipanich, Rubber Chem.Technol., Vol. 80 (2007), p.365.

Google Scholar

[20] S.H.C. Man, A.S. Hashim, H.M. Akil., J. Appl. Polym. Sci., Vol. 109 (2008), p.9.

Google Scholar

[21] C.Z. He, H.S. Tan, X.D. She, China Rubber Industry, Vol. 56 (2009), p.28.

Google Scholar

[22] C.Z. He, H.S. Tan, X.D. She,. China Elastomerics. Vol. 19 (2009), p.19.

Google Scholar

[23] A. Broido, J. Polym. Sci. Part A-2: Polymer Physics, Vol. 7 (1969), p.1761.

Google Scholar

[24] S.Q. Liao, X.D. She, S.D. Li, J.P. Zhong, Y. Lang, C.Z. He., J. Polym. Mater., Vol. 27 (2010), p.69.

Google Scholar

[25] J.R.D. Marinho, Y. Tanaka, J.Rubber Res., Vol. 2 (1999), p.231.

Google Scholar

[26] Y. Tanaka, S. Kawahara, J. Tangpakdee, KGK-Kautschuk und Gummi Kunststoffe, Vol. 50 (1997), p.6.

Google Scholar

[27] T. Karino, Y. Ikeda, Y. Yasuda, S. Kohjiya, Shibayama M, Biomacromolecules, Vol. 8 (2007), p.693.

Google Scholar