Shape-Memory NiTi Foam Synthesized by CIP and Sintering with NaCl Space-Holders

Article Preview

Abstract:

For bone implant NiTi foams with a structure (69.3-69.9% porosity and 150-400μm pore size) were fabricated by CIP and sintering with NaCl space-holders. A maximum compressive strength of 30.90Mpa and a ultimate compressive ductility of 33.5% were obtained. Moreover, 81-89% of the strain recovered after inducing shape-memory effect. In particular, the pores completely replicate the shape and size of the NaCl powders. It provides a powerful tool to tailor the pore structure and mechanical properties of NiTi foams to match the demand of bone implant. Simple processing route and low cost allow these foams to be a suitable candidate for bone implant applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

76-81

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Suh. Recent advances in biomaterials. Yonsei Med. J. Vol. 39 (1998), p.87.

Google Scholar

[2] G. Ryan, A. Pandit, D.P. Apatsidis: Biomater. Vol. 27 (2006), p.2651.

Google Scholar

[3] B. Kasemo, J. Lausmaa: CRC Crit Rev; Biocompat Vol. 2 (1986), p.335.

Google Scholar

[4] M.A. Lopez-Heredia, J. Sohier, C. Gaillard, S. Quillard, M. Dorget, P. Layrolle: Biomater. Vol. 29 (2008), p.2608.

DOI: 10.1016/j.biomaterials.2008.02.021

Google Scholar

[5] Y. Zhao, M. Taya, Y.S. Kang, A. Kawasaki: Acta Mater/ Vol. 53 (2005), p.337.

Google Scholar

[6] V.I. Itin, V.E. Gyunter, S.A. Shabalovskaya, R.L.C. Sachdeva. Mater. Charact. Vol. 32 (1994), p.179.

Google Scholar

[7] Y. Zhao, M. Taya, H. Izui: Int. J. Solids Struct. Vol. 43 (2006), p.2497.

Google Scholar

[8] S.J. Simske, R. Sachdeva: J. Biomed. Mater. Res. Vol. 29 (1995), p.527.

Google Scholar

[9] O. Prymak, D. Bogdanski, M. Koller, S.A. Esenwein, G. Muhr, F. Beckmann: Biomater. Vol. 26 (2005), p.5801.

Google Scholar

[10] C. Greiner, S.M. Oppenheimer, D.C. Dunand: Acta Biomater. Vol. 1 (2005), p.705.

Google Scholar

[11] J.S. Kim, J.H. Kang, S.B. Kang, K.S. Yoon, Y.S. Kwon: Adv. Eng. Mater. Vol. 6 (2004), p.403.

Google Scholar

[12] B.Y. Li, L.J. Rong, Y.Y. Li, V.E. Gjunter: Intermetallics Vol. 8 (2000), p.881.

Google Scholar

[13] B.Y. Tay, M.H. Myint, H. Xie, F.L. Ng: SIM Tech. Reports Vol. 6 (2005), p.18.

Google Scholar

[14] B. Yuan, X.P. Zhang, C.Y. Chung, M. Zhu: Mater. Sci. Eng. A Struct. Mater. Prop. Microst. Proc. Vol. 438 (2006), p.585.

Google Scholar

[15] A. Bansiddhi, D. Dunand: Acta Biomater. Vol. 4 (2008), p.1996.

Google Scholar

[16] A. Bansiddhi, D. Dunand: Intermetallics Vol. 15 (2007), p.1612.

Google Scholar

[17] C.M. Jackson, H.J. Wagner, R.J. Wasilewski, in: 55-nitinol—the alloy with a memory: its physical metallurgy, properties, and applications (1972).

Google Scholar

[18] B.Y. Li, L.J. Rong, Y.Y. Li: Intermetallics Vol. 8 (2000), p.643.

Google Scholar