Synthesis of Single-Phase Nanocrystalline YIG by Co-Precipitation: The Influence of pH Value of Precursor Solution and Calcinating

Article Preview

Abstract:

Single-phase nanocrystalline YIG powders have been successfully synthesized through chemical co-precipitation methods. The influence of pH value of the precursor solution and calcinating conditions (temperatures ranging from 700 to 900°C and times ranging from 0.5 to 12 hours) on the purity and grain size of the single-phase nanocrystalline YIG powders were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) technique. The results show that a pure single-phase YIG powder was obtained as the pH value of precursor solution above 10 and the YIG grain grows bigger as calcinating temperature and time increased. Finally, the optimal condition to form single-phase nanocrystalline YIG with the smallest grain size is calcinating at 750°C for 7 hours.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 311-313)

Pages:

1294-1299

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. R. K. Murthy, S. Sundaram, B. Viswanathan, MicrowaveMaterials, Narosa Publishing House, India, 1993.

Google Scholar

[2] R. E. Collin, Foundations For Microwave Engineering, second ed., McGraw-Hil New York, 1994.

Google Scholar

[3] Y. H. Jeon, J.W. Lee, J.H. Oh, J.C. Lee, S.C. Choi, Phys. Status Solidi A 201 (2004) 1893–1896.

Google Scholar

[4] T. Y. Kim, Y. Yamazaki, T. Hirano, Phys. Status Solidi B 241 (2004) 1601–1604.

Google Scholar

[5] S. Taketomi, C. M. Sorensen, K. J. Klabunde, J. Magn. Magn. Mater. 222 (2000) 54.

Google Scholar

[6] F. Grasset, S. Mornet, A. Demourgues, J. Portier, J. Bonnet, A. Vekris, E. Duguet, J. Magn. Magn. Mater. 234 (2001) 409.

DOI: 10.1016/s0304-8853(01)00386-9

Google Scholar

[7] P. Vaqueiro, M. A. Lopez-Quintela, J. Rivas, J.M. Greneche, J. Magn. Magn. Mater. 169 (1997) 56.

Google Scholar

[8] M. Jafelicci Jr., R. H. M. Godoi, J. Magn. Magn. Mater. 226–230 (2001) 1421.

Google Scholar

[9] M. M. Rashad, M. M. Hessien, A. Ei-Midany, I. A. Ibrahim, J. Magn. Magn. Mater. 321 (2009) 3752.

Google Scholar

[10] M. Risti ´ c, I. Nowik, S. Popovi ´ c, I. Felner, S. Musi ´ c, Mater. Lett. 57 (2003) 2584.

Google Scholar

[11] F. R. Lamastra, A. Bianco, F. Leonardi, G. Montesperelli, F. Nanni, G. Gusmano,Mater. Chem. Phys. 107 (2008) 274.

Google Scholar

[12] P. Vaqueiro, M. A. López-Quintela, J. Rivas, J. Mater. Chem. 7 (1997) 501.

Google Scholar

[13] P. Vaqueiro, M. A. López-Quintela, Chem. Mater. 9 (1997) 2836.

Google Scholar

[14] M. Pal, D. Chakravorty, Physica E 5 (2000) 200.

Google Scholar

[15] R. D. Sáncheza, C. A. Ramos, J. Rivas, P. Vaqueiro, M. A. López-Quintela, Physica B 354 (2004) 104.

Google Scholar

[16] Y. S. Cho, V.L. Burdick, V.R.W. Amarakoon, J. Am. Ceram. Soc. 80 (1997) 1605.

Google Scholar

[17] S. Hosseini Vajargah, H. R. Madaah Hosseini, Z. A. Nemati, J. Alloy Compd. 430 (2007) 339.

Google Scholar

[18] Y. J. Wu, H. P. Fu, R. Y. Hong, Y. Zheng, D. G.Wei, J. Alloys Compd. 470 (2009) 497.

Google Scholar

[19] H. P. Fu, R.Y. Hong, Y.J. Wu, G.Q. Di, B. Xu, Y. Zheng, D.G. Wei, J. Magn. Magn. Mater. 320 (2008) 2584.

Google Scholar

[20] M.M. Rashad, M. Radwan, M.M. Hessien, J. Alloys Compd. 453 (2008) 304.

Google Scholar

[21] M.M. Hessien, M.M. Rashad, K. El-Barawy, J. Magn. Magn. Mater. 320 (2008)336.

Google Scholar