Dielectric Properties and Diffuse Phase Transition of Sol-Gel Derived 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 Ceramics

Article Preview

Abstract:

The 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 (abbreviated to BNT-BT) powder and ceramic was synthesized by sol-gel process. The phase structure and dielectric properties of the ceramics were investigated. The ceramic was sintering at 1000-1100 degree C for 2-4 h in air atmosphere, and the X-ray diffraction (XRD) results revealed that the samples was pure perovskite-type phase. The Curite temperature of BNT-BT ceramics was high up to 348 degree C. The temperature dependence of dielectric permittivity and loss revealed there were two phase transitions, which were from ferroelectric (tetragonal) to anti-ferroelectric (rhombohedral) and anti-ferroelectric to paraelectric (cubic) in BNT-BT ceramics. Diffuse phase transitions were observed in BNT and BNT-BT ceramics and the Curie-Weiss Exponent (CWE) were nearly 2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 311-313)

Pages:

1481-1484

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Ishii, H. Nagata, T. Takenake, Jpn. J. Appl. Phys. 40 (2001) pp.5660-5663.

Google Scholar

[2] G.A. Smolenskii, V.A. Isupv, A.I. Afranovskaya, N.N. Krainik, J. Sov. Phys. Solid State 2 (1961), pp.2651-2654.

Google Scholar

[3] X. X. Wang, S. H. Choy, X. G. Tang, and H. L. W. Chan, J. Appl. Phys. 97 (2005) pp.4101-4104.

Google Scholar

[4] S.J. Kuang, X.G. Tang, T.D. Cheng, N. Ding, and Q.X. Liu, Phys. Status Solidi A, 4(2009), pp.745-749.

Google Scholar

[5] T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30(1991), pp.2236-2239.

Google Scholar

[6] A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki, Jpn. J. Appl. Phys. 38 (1999), pp.5564-5567.

Google Scholar

[7] BJ Chu, DR Chen, GR Li and QR Yin, J. Eur. Ceram. Soc. 22 (2002), pp.2115-2121.

Google Scholar

[8] H. Nagata, M. Toshiba, Y. Makiuchi, T. Takenaka, Jpn. J. Appl. Phys.42 (2003) 7401.

Google Scholar

[9] H. Nagata and T. Takenaka, Jpn. J. Appl Phys., Part B, 36 (1997), pp.6055-6057.

Google Scholar

[10] H.D. Li, C.D. Feng, and W.L. Yao, Mater. Lett., 58(2004), pp.1194-1198.

Google Scholar

[11] X.X. Wang, X.G. Tang, and H.L.W. Chan, Appl. Phys. Lett., 85 (2004), pp.91-93.

Google Scholar

[12] T. Takenaka, K. Maruyama and K. Sakata, Jpn. J. Appl. Phys. 30 (1991), pp.2236-2239.

Google Scholar

[13] A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38 (1999),pp.5564-5567.

Google Scholar

[14] X.X. Wang, K.H. Lam, X.G. Tang, H.L.W. Chan, Solid State Commun., 130(2004), pp.695-699.

Google Scholar

[15] L.F. Gao , Y.Q. Huang, Y. Hu, H.Y. Du, Ceram. Int., 33 (2007), pp.1041-1046.

Google Scholar

[16] J.N. Yang, P. Liu, X.B. Bian, H.X. Jing, Y.J. Wang,Y. Zhang, Y. Wu, and W.H. Song, Mater. Sci. Eng. B, 176 (2011), pp.260-265

Google Scholar

[17] K. Uchino and S. Nomura, Ferrolelectric Lett. 44(1982), pp.55-61.

Google Scholar