Effect of Size on Degradation of Porous Poly(Lactic Acid) Scaffold

Article Preview

Abstract:

Poly (lactic acid) (PLA) scaffolds with different sizes are often fabricated for various requirements. A cellular automaton simulation was used to investigate the effect of the size on the degradation behaviors of porous PLA scaffolds. Four porous PLA scaffolds with 90% initial porosity and different sizes were established by a novel repeat unit method. Mass loss and the change in molecular weight during the degradation were simulated. The results indicate that mass loss is related to the size of the porous scaffold while molecular weight change is independent on the size. With the size of the porous scaffold increasing, the mass loss increases while the difference in mass loss between the scaffolds with different sizes decreases. All these changes can be attributed to the difference in the autocatalytic effect and corresponding oligomer diffusion ability of the porous scaffolds with different sizes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 311-313)

Pages:

1741-1745

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Mäkelä, T. Pohjonen, P. Törmälä, T. Waris, N. Ashammakhi, Strength retention properties of self-reinforced poly L-lactide (SR-PLLA) sutures compared with polyglyconate (MaxonR) and polydioxanone (PDS) sutures. An in vitro study, Biomaterials 23 (2002) 2587-2592.

DOI: 10.1016/s0142-9612(01)00396-9

Google Scholar

[2] M. Todo, S.-D. Park, T. Takayama, K. Arakawa, Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends, Eng. Fract. Mech. 74 (2007) 1872-1883.

DOI: 10.1016/j.engfracmech.2006.05.021

Google Scholar

[3] L.F. Zhang, R. Sun, L. Xu, J. Du, Z.C. Xiong, H.C. Chen, C.D. Xiong, Hydrophilic poly (ethylene glycol) coating on PDLLA/BCP bone scaffold for drug delivery and cell culture, Mater. Sci. Eng. C 28 (2008) 141-149.

DOI: 10.1016/j.msec.2007.01.005

Google Scholar

[4] J.J. Blaker, S.N. Nazhat, V. Maquet, A.R. Boccaccini, Long-term in vitro degradation of PDLLA/Bioglass® bone scaffolds in acellular simulated body fluid, Acta Biomater. 7 (2011) 829-840.

DOI: 10.1016/j.actbio.2010.09.013

Google Scholar

[5] I. Grizzi, H. Garreau, S. Li, M. Vert, Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence, Biomaterials 16 (1995) 305-311.

DOI: 10.1016/0142-9612(95)93258-f

Google Scholar

[6] M. Dunne, O. I. Corrigan, Z. Ramtoola, Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles, Biomaterials 21 (2000) 1659-1668.

DOI: 10.1016/s0142-9612(00)00040-5

Google Scholar

[7] J. Siepmann, K. Elkharraz, F. Siepmann, D. Klose, How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment, Biomacromolecules 6 (2005) 2312-2319.

DOI: 10.1021/bm050228k

Google Scholar

[8] D. Klose, F. Siepmann, K. Elkharraz, S. Krenzlin, J. Siepmann, How porosity and size affect the drug release mechanisms from PLGA-based microparticles, Int. J. Pharm. 314 (2006) 198-206.

DOI: 10.1016/j.ijpharm.2005.07.031

Google Scholar

[9] L. B. Wu, J. D. Ding, Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering, J. Biomed. Mater. Res. A 75A (2005) 767-777.

DOI: 10.1002/jbm.a.30487

Google Scholar

[10] C. Guo, X. B. Sheng, C. L. Chu, Y. S. Dong, Y. P. Pu, P. H. Lin, A cellular automaton simulation of the degradation of porous polylactide scaffold: I. Effect of porosity, Mater. Sci. Eng. C 29 (2009) 1950-1958.

Google Scholar

[11] H. Tsuji, Y. Ikada, Properties and morphology of poly(L-lactide). II. Hydrolysis in alkaline solution, J. Polym. Sci., Part A: Polym. Chem. 36 (1998) 59-66.

DOI: 10.1002/(sici)1099-0518(19980115)36:1<59::aid-pola9>3.0.co;2-x

Google Scholar

[12] S. M. Li, S. McCarthy, Further investigations on the hydrolytic degradation of poly (DL-lactide), Biomaterials 20 (1999) 35-44.

DOI: 10.1016/s0142-9612(97)00226-3

Google Scholar

[13] F. v. Burkersroda, L. Schedl, A. Gopferich, Why degradable polymers undergo surface erosion or bulk erosion, Biomaterials 23 (2002) 4221-4231.

DOI: 10.1016/s0142-9612(02)00170-9

Google Scholar

[14] C. Vidil, C. Braud, H. Garreau, M. Vert, Monitoring of the poly(D,L-lactic acid) degradation by-products by capillary zone electrophoresis, J. Chromatogr. A 711 (1995) 323-329.

DOI: 10.1016/0021-9673(95)00517-q

Google Scholar

[15] G. Schliecker, C. Schmidt, S. Fuchs, T. Kissel, Characterization of a homologous series of D,L-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro, Biomaterials 24 (2003) 3835-3844.

DOI: 10.1016/s0142-9612(03)00243-6

Google Scholar

[16] Y. Mohammadi, E. Jabbari, Monte Carlo simulation of degradation of porous poly(lactide) scaffolds, 1 Effect of porosity on pH, Macromol. Theory Simul. 15 (2006) 643-653.

DOI: 10.1002/mats.200600036

Google Scholar