[1]
P. Mäkelä, T. Pohjonen, P. Törmälä, T. Waris, N. Ashammakhi, Strength retention properties of self-reinforced poly L-lactide (SR-PLLA) sutures compared with polyglyconate (MaxonR) and polydioxanone (PDS) sutures. An in vitro study, Biomaterials 23 (2002) 2587-2592.
DOI: 10.1016/s0142-9612(01)00396-9
Google Scholar
[2]
M. Todo, S.-D. Park, T. Takayama, K. Arakawa, Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends, Eng. Fract. Mech. 74 (2007) 1872-1883.
DOI: 10.1016/j.engfracmech.2006.05.021
Google Scholar
[3]
L.F. Zhang, R. Sun, L. Xu, J. Du, Z.C. Xiong, H.C. Chen, C.D. Xiong, Hydrophilic poly (ethylene glycol) coating on PDLLA/BCP bone scaffold for drug delivery and cell culture, Mater. Sci. Eng. C 28 (2008) 141-149.
DOI: 10.1016/j.msec.2007.01.005
Google Scholar
[4]
J.J. Blaker, S.N. Nazhat, V. Maquet, A.R. Boccaccini, Long-term in vitro degradation of PDLLA/Bioglass® bone scaffolds in acellular simulated body fluid, Acta Biomater. 7 (2011) 829-840.
DOI: 10.1016/j.actbio.2010.09.013
Google Scholar
[5]
I. Grizzi, H. Garreau, S. Li, M. Vert, Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence, Biomaterials 16 (1995) 305-311.
DOI: 10.1016/0142-9612(95)93258-f
Google Scholar
[6]
M. Dunne, O. I. Corrigan, Z. Ramtoola, Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles, Biomaterials 21 (2000) 1659-1668.
DOI: 10.1016/s0142-9612(00)00040-5
Google Scholar
[7]
J. Siepmann, K. Elkharraz, F. Siepmann, D. Klose, How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment, Biomacromolecules 6 (2005) 2312-2319.
DOI: 10.1021/bm050228k
Google Scholar
[8]
D. Klose, F. Siepmann, K. Elkharraz, S. Krenzlin, J. Siepmann, How porosity and size affect the drug release mechanisms from PLGA-based microparticles, Int. J. Pharm. 314 (2006) 198-206.
DOI: 10.1016/j.ijpharm.2005.07.031
Google Scholar
[9]
L. B. Wu, J. D. Ding, Effects of porosity and pore size on in vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering, J. Biomed. Mater. Res. A 75A (2005) 767-777.
DOI: 10.1002/jbm.a.30487
Google Scholar
[10]
C. Guo, X. B. Sheng, C. L. Chu, Y. S. Dong, Y. P. Pu, P. H. Lin, A cellular automaton simulation of the degradation of porous polylactide scaffold: I. Effect of porosity, Mater. Sci. Eng. C 29 (2009) 1950-1958.
Google Scholar
[11]
H. Tsuji, Y. Ikada, Properties and morphology of poly(L-lactide). II. Hydrolysis in alkaline solution, J. Polym. Sci., Part A: Polym. Chem. 36 (1998) 59-66.
DOI: 10.1002/(sici)1099-0518(19980115)36:1<59::aid-pola9>3.0.co;2-x
Google Scholar
[12]
S. M. Li, S. McCarthy, Further investigations on the hydrolytic degradation of poly (DL-lactide), Biomaterials 20 (1999) 35-44.
DOI: 10.1016/s0142-9612(97)00226-3
Google Scholar
[13]
F. v. Burkersroda, L. Schedl, A. Gopferich, Why degradable polymers undergo surface erosion or bulk erosion, Biomaterials 23 (2002) 4221-4231.
DOI: 10.1016/s0142-9612(02)00170-9
Google Scholar
[14]
C. Vidil, C. Braud, H. Garreau, M. Vert, Monitoring of the poly(D,L-lactic acid) degradation by-products by capillary zone electrophoresis, J. Chromatogr. A 711 (1995) 323-329.
DOI: 10.1016/0021-9673(95)00517-q
Google Scholar
[15]
G. Schliecker, C. Schmidt, S. Fuchs, T. Kissel, Characterization of a homologous series of D,L-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro, Biomaterials 24 (2003) 3835-3844.
DOI: 10.1016/s0142-9612(03)00243-6
Google Scholar
[16]
Y. Mohammadi, E. Jabbari, Monte Carlo simulation of degradation of porous poly(lactide) scaffolds, 1 Effect of porosity on pH, Macromol. Theory Simul. 15 (2006) 643-653.
DOI: 10.1002/mats.200600036
Google Scholar