Investigation of Effect of Chemical Etching and Temperature on Optical Properties of Porous Silicon Layer

Article Preview

Abstract:

The paper investigated the effect of chemical etching and temperature on the optical properties and microstructures of porous silicon layer fabricated by the pulse electrochemically etching by means of the reflectance spectroscopy and photoluminescence spectroscopy. The relationship between the optical thickness (nd) and refractive index n of porous silicon layer and the chemical etching time and temperature has been detailedly studied. With increasing the chemical etching times, the reflectance spectra exhibit the more intense interference oscillations, which mean the uniformity and interface smoothness of porous silicon layers become better, meanwhile, results in decreasing the optical thickness and refractive index, indicating a higher porosity. Moreover, the intensity of photoluminescence spectra increases, and the envelope curves of photoluminescence spectra exhibit a trend of red-shift, which implied the average diameter of silicon nanocrystallite became larger. The chemical etching rate of the optical thickness intensely increases with the chemical etching temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 311-313)

Pages:

1773-1778

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Canham L. T. Appl. Phys. Lett, 1990, 57: 1046-1048.

Google Scholar

[2] Hirschman K.D. Tsybeskov L, Duttagupta S.P, et al. Nature, 1996, 384: 338-341.

Google Scholar

[3] Bisi O, Ossicini S, and Pavesi L. Sur. Sci. Rep, 2000, 38: 1-126.

Google Scholar

[4] Pavesi L, Mazzoleni C, Tredicucci A, et al. Appl. Phys. Lett, 1995, 67: 3280-3282.

DOI: 10.1063/1.115220

Google Scholar

[5] Reece P.J, Lérondel G, Zheng W.H, et al. Appl. Phys. Lett, 2002, 81: 4895-4897.

Google Scholar

[6] Xu S.H, Xiong Z.H, Gu L.L, et al. Solid State Communs, 2003, 126: 125-128.

Google Scholar

[7] Hou X.Y, Fan H.L, Xu L, et al. Appl. Phys. Lett, 1996, 68: 2323-2325.

Google Scholar

[8] Ge J, Yin W. J, Long Y. F, et al. CHIN. PHYS. LETT. 2007, 24: 1361-1364.

Google Scholar

[9] Liu Y, Xiong Z.H, Liu Y, et al. Solid State Communs. 2003, 127:583-585.

Google Scholar

[10] Ou W. Y, Zhao L, Diao H. W, Zhang J and Wang W. J. Journal of Semiconductors, 2011, 32: 056002-4.

Google Scholar

[11] Long Y.F, Ge J, Ding X.M, et al. Journal of Semiconductors, 2009, 30: 063002-5.

Google Scholar

[12] Ohmukai M, Uehara N, Ymasaki T, et al. Czech. J. Phys, 2004, 54:781-784.

Google Scholar

[13] Ohmukai M, Mukai H, Tsutsumi Y. Materials Science and Engineering. 2002, B95: 287-289.

Google Scholar

[14] Navarro-Urrios D., Pérez-Padrón C., Lorenzo E., et al. Phys. Stat. Sol (a), 2005, 8:1518-1523.

Google Scholar

[15] Tsuboi T, Sakka T, Ogata Y. H. Solid State Communs. 1999, 109: 195-199.

Google Scholar

[16] Korsunskaya N. E, Stara T. R, Khomenkova L. Yu, Svezhentsova^ K. V, Melnichenko N. N, and Sizov F. F. Semiconductors, 2010, 44: 79–83.

DOI: 10.1134/s1063782610010136

Google Scholar

[17] Long Y.F and Ge J. Journal of Semiconductors. 2009, 30: 052003-5.

Google Scholar

[18] Kim D. –A, Lee J. –S, Park M. –B, et al. J. Korean Phys. Soc, 2003, 42: S184-S188.

Google Scholar

[19] Long Y. F. Journal of Semiconductors. 2011, 32: 043003-4.

Google Scholar