Si3N4 Double Passivation Methods for Optimizing the DC Properties in a Gamma-Gate AlGaN/GaN HEMT Using Plasma Enhanced Chemical Vapor Deposition

Article Preview

Abstract:

Double passivation layers, Si3N4 on Si3N4 (Si3N4 / Si3N4), have been implemented onto the top and bottom surface passivation film layers for a gamma-gate AlGaN/GaN HEMT using Plasma Enhanced Chemical Vapor Deposition (PECVD). The effects of the reduced current collapse electro characteristics were then compared to devices using double passivation as SiO2 on SiO2 (SiO2 / SiO2). Both samples were tested under the same conditions: Vds = 0 to 15 V and Vgs = 1 to -5 V. The Si3N4 / Si3N4 passivation results show a maximum saturation current density (Ids max) of 761 mA/mm, a peak extrinsic trans conductance (gm max) of 200 mS/mm, and threshold voltages of (Vth) -4.5 V, which increases up to 18% and 5% than those of SiO2/SiO2 double passivation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 311-313)

Pages:

1793-1797

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.Wang and N. Y. Kim, Trans. Electr Electron Mater, 10 (2009) pp.147-151

Google Scholar

[2] C. Wang, W. S. Lee, F. Zhang and N. Y. Kim, Int J Adv Manuf Technol, 52 (2010) pp.1011-1018

Google Scholar

[3] Soohwan Jang, et al., J Electron Materials, 86 (2006) pp.685-690

Google Scholar

[4] Yu-Ting Chen, Kun-Ming Chen, Wen-Shiang Liao, Guo-Wei Huang, and Fon-Shan Huang IEEE Electron Device Lett, 31, (2010) pp.1368-1370

Google Scholar

[5] B. Luo, et al., J. Electrochem. Sc. 149(2002) G613-G619

Google Scholar

[6] Harrison I, Clayton W, Jeffs W. Phys Stat Solidi (A), (2001) 188: p.275–278.

Google Scholar

[7] B. Gaffey, L. J. Guido, X. W. Wang, and T. P. Ma, IEEE Trans. Electron Devices, ED48, (2001) pp.458-464

Google Scholar

[8] C. Wang, N. Y. Kim Microw Opt Tech Lett, 53 (2011) pp.789-793

Google Scholar

[9] T. Palacios, et al., IEEE Electron Device Lett., 26 (2005) pp.781-783

Google Scholar

[10] M. Asif Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, Appl. Phys. Lett., 77, (2001) p.1339

Google Scholar

[11] G. Simin, et al., IEEE Electron Device Lett, 22 (2001) p.53

Google Scholar

[12] V.Desmaris, J. Y. Shiu, N. Rorsman, H. Zirath and E. Y. Chang, Solid State Electron, 52 (2008) pp.632-636

DOI: 10.1016/j.sse.2007.10.022

Google Scholar

[13] B. Luo, et al., Solid State Electron. 46(2002) p.2185

Google Scholar

[14] Liu Y, et al., Phys. Stat. Solidi (2002) 1: pp.69-73

Google Scholar

[15] C. Liu, E. F. Chor, L. S. Tan, Thin Solid Films, 515(2007) pp.4369-4372

Google Scholar

[16] B. P. Gila, et al., Phys. Status Solidi (A), 188, (2001) p.239

Google Scholar