Electromechanical Coupling Coefficient of SAW on Proton-Exchanged and Annealed LiNbO3 Waveguides

Article Preview

Abstract:

We had investigated the electromechanical coupling coefficient (K2) of surface acoustic wave (SAW) on proton-exchanged (PE) and annealed PE (APE) z-cut LiNbO3 waveguides using octanoic acid. The penetration depth of hydrogen assumed to be equal to the waveguide depth (d) was measured by secondary-ion mass spectrometry (SIMS). The frequency response of SAW was measured with a network analyzer. The annealing process was carried out in a horizontal furnace kept at 400°C for 2 h under a dry O2 gas flow. The change of K2 in PE and APE samples fabricated under different conditions was dependent on kd, where k was the wavenumber. The experimental results showed that the variation of K2 in PE samples was significantly decreased with the increase of kd. The reduction of K2 may be due to the reduced piezoelectric coefficients in the PE layer. On the other hand, the variation of K2 in APE samples also exhibited the decreased tendency after annealing. It indicated that the annealing process could not restore the reduction of K2 caused by the PE process.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 311-313)

Pages:

1957-1960

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. L. Jackel, C. E. Rice and J. J. Veselka: Appl. Phys. Lett. Vol. 41 (1982), p.607.

Google Scholar

[2] F. S. Hickernell, K. D. Ruehle, S. J. Joseph, G. M. Reese and J. F. Weller: in Proc. IEEE Ultrason. Symp. (1985), p.237.

Google Scholar

[3] A. Campari, C. Ferrari, G. Mazzi, C. Summonte, S. M. Al-Shukri, A. Dawar, R. M. DeLaRue and A. C. G. Nutt: J. Appl. Phys. Vol. 58 (1985), p.4521.

DOI: 10.1063/1.336266

Google Scholar

[4] P. J. Burnett, G. A. D. Briggs, S. M. Al-Shukri, J. F. Duffy and R. M. DeLaRue: J. Appl. Phys. Vol. 60 (1986), p.2517.

Google Scholar

[5] N. Saiga and Y. Ichioka: J. Appl. Phys. Vol.61 (1987), p.1230.

Google Scholar

[6] V. Hinkov: J. Appl. Phys. Vol. 62 (1987), p.3573.

Google Scholar

[7] R. G. Wilson, S. W. Novak, J. M. Zavada, A. Loni and R. M. DeLaRue: J. Appl. Phys. Vol. 66 (1989), p.6055.

Google Scholar

[8] E. Y. B. Pun, P. S. Chung and C. K. Chan: Jpn. J. Appl. Phys. Vol. 31 (1992), p.1591.

Google Scholar

[9] P. J. Matthews and A. R. Mickelson: J. Appl. Phys. Vol. 71 (1992), p.5310.

Google Scholar

[10] K. Yamamoto, K. Mizuuchi and T. Taniuchi: Jpn. J. Appl. Phys. Vol. 31 (1992), p.1059.

Google Scholar

[11] C. C. Cheng, Y. C. Chen and S. T. Wang: J. Phys. D: Appl. Phys. vol. 29 (1996), p.589.

Google Scholar

[12] S. Kakio and Y. Nakagawa: Jpn. J. Appl. Phys. Vol. 36 (1997), p.3064.

Google Scholar

[13] D. Ciplys and R. Rimeika: Appl. Phys. Lett. Vol. 73 (1998), p.2417.

Google Scholar

[14] K. Ito and K. Kawamoto: Jpn. J. Appl. Phys. Vol. 37 (1998), p.4858.

Google Scholar