Growth of Nanostructure on Cu0.62Zn0.38 after SMAT during Thermal Oxidation

Article Preview

Abstract:

Commercial Cu0.62Zn0.38foil was subjected to surface mechanical attrition treatment (SMAT) processing. The original and SMAT Cu0.62Zn0.38 foils are thermally oxidized at 500°C under N2-5%O2 gas environments, at a pressure of 1 atm for 3 hours. The oxidized specimens were characterized with a scanning electron microscope, an X-ray diffractometer. It is found that nanosheets are easily formed on the SMAT specimen surface. The favorable formation of nanosheets relates to twin–matrix lamellae structure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 311-313)

Pages:

498-501

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, P. D. Yang, Science, 292, 1897 (2001).

DOI: 10.1126/science.1060367

Google Scholar

[2] Y. B. Li, Y. Bando, T. Sato, K. Kurashima, Appl. Phys. Lett., 81, 144 (2002).

Google Scholar

[3] P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, H. J. Choi, Adv. Funct. Mater., 12, 323 (2002).

DOI: 10.1002/1616-3028(20020517)12:5<323::aid-adfm323>3.0.co;2-g

Google Scholar

[4] M. J. Zheng, L. D. Zhang, G. H. Li, W. Z. Shen, Chem. Phys. Lett., 363, 123 (2002).

Google Scholar

[5] W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, Appl. Phys. Lett., 80, 4232 (2002).

Google Scholar

[6] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally, P. D. Yang, Angew. Chem. Int. Ed., 42, 3031 (2003).

DOI: 10.1002/anie.200351461

Google Scholar

[7] G.Z. Ting, Effect of preheating temperature on the cooling curves of BW quenching media, .J. 1228-1233 (2011).

Google Scholar

[8] K. F. Huo, Y. M. Hu, J. J. Fu, X. B. Wang, P. K. Chu, Z. Hu, Y. Chen, J. Phys. Chem. C, 111, 5876 (2007).

Google Scholar

[9] K. Wang, N.R. Tao, G. Liu, J. Lu, K. Lu Acta Mater., 54, 5281 (2006). 10 C. H. Xu, Z. B. Zhu,G. L. Li, W. R. Xu and H. X. Huang, Mater. Chem. Phys., 124, 252 (2010).

Google Scholar

[11] B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd, (Prentice Hall, New Jersey, 2001).

Google Scholar

[12] C. H. Xu, W. Gao, Mat. Res. Innovat. 3, 231 (2000).

Google Scholar

[13] B. Birks, Introduction to High Temperature Oxidation of Metals, 2nd edition, (Cambridge University Press, Cambridge, 2006).

Google Scholar

[14] K. X. Guo, Classification and Micrograph of Copper and Alloys, (China Scientific Publishing Company, Xian, 2005).

Google Scholar

[15] S. A. Bradford, Corrosion Control, 2nd edition, (ASM International, CASTI Publishing Inc., 2004).

Google Scholar

[16] Y. S. Nechaev, Defect and Diffusion Forum, 194-199, 1713 (2001).

Google Scholar