Effect of Grain Rotation on the Strain-Softening Behavior in Nanocrystalline Materials

Article Preview

Abstract:

We postulated a softening model involving grain rotation that results in diffusion-accommodated grain-boundary sliding. This numerical model was used to compute the proportion evolution of grains within shear bands and was also employed to predict the softening of nanocrystalline materials considering non-homogeneous plastic deformation due to shear bands. The effect of softening mechanism for total stress-strain relation and the grain size and mean maximum Schmid factor effect was also considered in our model.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 311-313)

Pages:

516-520

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Meyers MA, Mishra A and Benson DJ.: Prog. Mater. Sci. Vol. 51 (2006), p.427

Google Scholar

[2] Yoo SH, Sudarshan TS and Sethuram K.: Nanostruct. Mater. Vol. 12 (1999), p.23

Google Scholar

[3] Jia D, Ramesh KT and Ma E.: Acta Mater. Vol. 51 (2003), p.3495

Google Scholar

[4] Zhu RT, Zhou JQ, Li XB, Jiang H and Ling X.: Mater. Charact. Vol. 61 (2010), p.396

Google Scholar

[5] Li S, Zhou JQ, Ma L, Xu N, Zhu RT and He XH.: Comput. Mater. Sci. Vol. 45 (2009), p.390

Google Scholar

[6] Jia D, Ramesh KT and Ma E.: Scripta Mater. Vol. 42(2000), p.73

Google Scholar

[7] Jia D, Wang YM, Ramesh KT, Ma E, Zhu YT and Valiev RZ.: Appl. Phys. Lett. Vol. 79 (2001), p.611

Google Scholar

[8] Wang YM, Ma E, and Chen MW: Appl. Phys. Lett. Vol. 80 (2002), p.2395

Google Scholar

[9] Wei Q, Jiao T, Ramesh KT and Ma E.: Scripta Mater. Vol. 50 (2004), p.359

Google Scholar

[10] Shan ZW, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM and Mao SX.: Science Vol. 305(2004), p.654

Google Scholar

[11] Asaro RJ and Needleman A.: Acta Metall. Vol. 33 (1985), p.923

Google Scholar

[12] Sanders PG, Rittner M, Kiedaisch E, Weertman JR, Kung H and Lu YC.: Nanostruct Mater. Vol. 9 (2001), p.433

Google Scholar

[13] Moldovan D, Wolf D and Phillpot SR.: Acta Mater. Vol. 49 (2001), p.3521

Google Scholar

[14] Doherty RD and Szpunar JA.: Acta Metall Vol. 32 (1984), p.1789

Google Scholar

[15] Brahme A, Alvi MH, Saylor D, Fridy J and Rollett AD.: Scripta Mater. Vol.55 (2006), p.75

DOI: 10.1016/j.scriptamat.2006.02.017

Google Scholar

[16] Cheng S, Ma E, Wang YM, Kecskes LJ, Youssef KM, Koch CC, Trociewitz UP and Han K.: Acta Mater. Vol. 53 (2005), p.1521

DOI: 10.1016/j.actamat.2004.12.005

Google Scholar

[17] Schwaiger R, Moser B, Dao M, Chollacoop N and Suresh S.: Acta Mater. Vol. 51 (2001), p.5159

Google Scholar