[1]
Kjellander J. A., 1983. Smoothing of cubic parametric splines. Computer-Aided Design 15(3), 175-179.
DOI: 10.1016/0010-4485(83)90085-4
Google Scholar
[2]
Farin G., Sapidis N., 1989. Curvature and the fairness of curves and surfaces. IEEE Computer Graphics and Applications 9(2), 52-57.
DOI: 10.1109/38.19051
Google Scholar
[3]
Farin G., Sapidis N., 1990. Automatic fairing algorithm for B-spline curves. Computer-Aided Design 22(2) 121-129.
DOI: 10.1016/0010-4485(90)90006-x
Google Scholar
[4]
Eck M., Hadenfeld J., 1995. Local energy fairing of B-spline curves. Computing Supplementum 10, 129-147.
DOI: 10.1007/978-3-7091-7584-2_9
Google Scholar
[5]
Wang Y., Zhao B., Zhang L., et al., 2004. Designing fair curves using monotone curvature pieces. Computer Aided Geometric Design 21(5), 515-527.
DOI: 10.1016/j.cagd.2004.04.001
Google Scholar
[6]
Xu S., Li W., Zhao G., 2004. Target curvature based on automatic fairing of planar B-spline curves. Computer Aided Geometric Design 21(5), 427-530.
DOI: 10.1016/j.cagd.2004.03.004
Google Scholar
[7]
Ke Y. L., Li Q. M., 2005. NURBS curve fairing based on non-uniform B-spline wavelet decomposition. Journal of Zhejiang University (Engineering Science) 39(7), 953-956.
Google Scholar
[8]
Amati G., 2007. A multi-level filtering approach for fairing planar cubic B-spline curves.Computer Aided Geometric Design 24(1), 53-66.
DOI: 10.1016/j.cagd.2006.09.004
Google Scholar
[9]
Lyche T, Mørken K, Quak E., 2001. Theory and algorithms for non-uniform spline wavelets[M] // Dyn N, Leviatan D, Levin D et al. Multivaritate Approximation and Applications. Cambridge: Cambridge University Press, 152-187.
DOI: 10.1017/cbo9780511569616.007
Google Scholar