Wavelet-Based Multiresolution NURBS Curve Fairing

Article Preview

Abstract:

A multiresolution approach is presented for NURBS curve fairing based on nonuniform semiorthogonal B-spline wavelets built. This method provides greater flexibility and applicability than uniform B-spline wavelets for multiresolution curve fairing. An example is presented to validate effectiveness of this multiresolution fairing method. Furthermore, the algorithm can be easily applied to NURBS curves in three dimensions as well as in two.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 314-316)

Pages:

1562-1565

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kjellander J. A., 1983. Smoothing of cubic parametric splines. Computer-Aided Design 15(3), 175-179.

DOI: 10.1016/0010-4485(83)90085-4

Google Scholar

[2] Farin G., Sapidis N., 1989. Curvature and the fairness of curves and surfaces. IEEE Computer Graphics and Applications 9(2), 52-57.

DOI: 10.1109/38.19051

Google Scholar

[3] Farin G., Sapidis N., 1990. Automatic fairing algorithm for B-spline curves. Computer-Aided Design 22(2) 121-129.

DOI: 10.1016/0010-4485(90)90006-x

Google Scholar

[4] Eck M., Hadenfeld J., 1995. Local energy fairing of B-spline curves. Computing Supplementum 10, 129-147.

DOI: 10.1007/978-3-7091-7584-2_9

Google Scholar

[5] Wang Y., Zhao B., Zhang L., et al., 2004. Designing fair curves using monotone curvature pieces. Computer Aided Geometric Design 21(5), 515-527.

DOI: 10.1016/j.cagd.2004.04.001

Google Scholar

[6] Xu S., Li W., Zhao G., 2004. Target curvature based on automatic fairing of planar B-spline curves. Computer Aided Geometric Design 21(5), 427-530.

DOI: 10.1016/j.cagd.2004.03.004

Google Scholar

[7] Ke Y. L., Li Q. M., 2005. NURBS curve fairing based on non-uniform B-spline wavelet decomposition. Journal of Zhejiang University (Engineering Science) 39(7), 953-956.

Google Scholar

[8] Amati G., 2007. A multi-level filtering approach for fairing planar cubic B-spline curves.Computer Aided Geometric Design 24(1), 53-66.

DOI: 10.1016/j.cagd.2006.09.004

Google Scholar

[9] Lyche T, Mørken K, Quak E., 2001. Theory and algorithms for non-uniform spline wavelets[M] // Dyn N, Leviatan D, Levin D et al. Multivaritate Approximation and Applications. Cambridge: Cambridge University Press, 152-187.

DOI: 10.1017/cbo9780511569616.007

Google Scholar