Enhancement of a Fault Measure for AMSs Using Probabilistic Timed Automata

Article Preview

Abstract:

A novel approach for probabilistic timed structure that is based on combining the formalisms of timed automata and probabilistic automata representation of the system is proposed. Due to their real-valued clocks can measure the passage of time and transitions can be probabilistic such that it can be expressed as a discrete probability distribution on the set of target states. The usage of clock variables and the specification of state space are illustrated with real value time applications. The transitions between states are probabilistic by events which describe either the occurrence of faults or normal working conditions. Additionally, the passage of discrete time and transitions can be probabilistic by mean of the theory of expectation sets to obtain a unified measure reasoning strategy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 317-319)

Pages:

681-684

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis: IEEE Trans. Autom. Contr., Vol. 40(9) (1995), p.1555–1575.

DOI: 10.1109/9.412626

Google Scholar

[2] R. Su and W. Wonham: IEEE Trans. Autom. Contr., Vol. 50(12) (2005), p.1923–1935.

Google Scholar

[3] F. Liu, D. Qiu, H. Xing, and Z. Fan: IEEE Trans. Autom. Control, Vol. 53(2) (2008), p.535–546.

Google Scholar

[4] R. Su and W. M. Wonham: In 5th IEEE Asian Contr. Conf., 2004, pp.412-419.

Google Scholar

[5] R. Su and W. M. Wonham: IEEE Conf. on Deci. and Contr., L. V., USA (2002), p.429–434.

Google Scholar

[6] A. Benveniste, E. Fabre, and S. Haar: in Proc. of 40th IEEE Conf. on Deci. and Contr., Orlando, USA (2001), p. FrP12–6.

Google Scholar

[7] C. N. Hadjicostis: in Proc. of the 41st IEEE Conf. on Deci. and Contr., L. V., USA (2002), p.3994–3999.

Google Scholar

[8] R. A. Howard: 1rd ed., MIT Press, Cambridge, MA (1960).

Google Scholar

[9] R. Alur and T. Henzinger: in 30th IEEE Symp. on Found. of Comput. Sci. (1989), pp.164-169.

Google Scholar

[10] F. Jahanian and A. Mok: IEEE Trans. Comput. Vol. C-36 (8) (1987), pp.961-975.

Google Scholar

[11] R. Alur and D. L. Dill: Theor. Comput. Sci., Vol. 126 (2) (1994), p.183–235.

Google Scholar

[12] M. Lawford and W. M. Wonham: in Proc. of the 36th IEEE Midwest Symp. on Circ. and Syst., Detroit, MI (1993), p.327–331.

Google Scholar

[13] C. Sheu and L. J. Krajewski: Inter. Jour. of prod. research, Vol. 32 (6) (1994), pp.1365-1382.

Google Scholar

[14] M. O. Rabin: Infor. and Contr., Vol. 6 (3) (1963), pp.230-245.

Google Scholar

[15] M. Z. Kwiatkowska, G. Norman, D. Parker, and J. Sproston: Formal Methods in Syst. Desi., Vol. 29 (1) (2006), p.33–78.

Google Scholar

[16] A. Hartmanns and H. Hermanns: in Proc. 6th IEEE Intern. Confe. Quantitative Evaluation of Systems (2009), pp.187-196.

Google Scholar

[17] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston: Theor. Comput. Sci., Vol. 282 (2002), p.101–150.

Google Scholar