Ammonium Removal from Aqueous Solutions Using an Ammonium Ion-Exchange Material, the Equilibrium Study

Article Preview

Abstract:

This article investigates the removal of ammonium from aqueous solutions using the ammonium ion-exchange material prepared by the modified kaolin. Batch tests were performed under a range of conditions to assess the effect of initial solution concentration, contact time and solution PH on the performance and capacity of the media for this application. The findings show that increasing initial solution concentration and contact time provide the best performance at an optimum PH of between 6 and 7 and the maximum ammonium adsorption capacity reaches at 79mgNH4+g-1 under the experimental conditions studied. Five isotherm models were used to describe the isotherm data. Three-parameter isotherm models (Redlich–Peterson and Langmuir–Freundlich) prove a better fit than two-parameter isotherm models (Langmuir, Freundlich and Temkin). These results indicate that the ammonium ion-exchange material is a promising material for cost-effective removal of ammonium from wastewater.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

102-107

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Sprynskyy and M. Lebedynets: Sep. Purif. Technol. Vol. 46(2005), pp.155-160.

Google Scholar

[2] Y. Feng, Y.Z. Yu and Q.N. Duan: Desalination Vol. 263(1-3)(2010), pp.146-150.

Google Scholar

[3] D. Katehis, V. Diyamandoglu and J. Fillos: Water Environmental Res. Vol. 70(1998), pp.231-240.

Google Scholar

[4] H.M. Baker and H. Fraij: Desalination Vol. 251 (2010), pp.41-46.

Google Scholar

[5] Q. Du, S.J. Liu and Y. Wang: Sep. Purif. Technol. Vol. 44 (2005), pp.229-234.

Google Scholar

[6] Y. Wang, S. Liu and Z. Xu: J. Hazard. Mater. Vol. B136 (2006), pp.735-740.

Google Scholar

[7] D. Karadag, Y. Koc and M. Turan: J. Hazard. Mater. Vol. B136 (2006), pp.604-609.

Google Scholar

[8] R. Malekian, J. A. Koupai and S.S. Eslamian: Applied Clay Science Vol. 51 (2011), pp.323-329.

Google Scholar

[9] D. Zhao, S.G. Wang and Z.K. Luan: Environmental Chemistry Vol. 22(1)(2003), pp.59-63.

Google Scholar

[10] L.C. Lei, X.J. Li and X.W. Zhang: Sep. Purif. Technol. Vol. 58(2008), pp.359-366.

Google Scholar

[11] V.K. Jha and S. Hayashi: J. Hazard. Mater. Vol. 169(2009), pp.29-35.

Google Scholar

[12] H. Kurama, C. Karagüzel and T. Mergan: Desalination Vol. 253 (2010), pp.147-152.

Google Scholar

[13] I.D.R. Mackinnon, K. Barr and E. Miller: Water Sci. Technol. Vol. 47 (11) (2003), pp.101-107.

Google Scholar

[14] M.L. Zhang, H.Y. Zhang and D. Xu: Desalination Vol. 271 (2011), pp.111-121.

Google Scholar

[15] A.M. Yusof, L.K. Keat and Z Ibrahim: J. Hazard. Mater. Vol. 174 (2010), pp.380-385.

Google Scholar

[16] S.L. Wang, N.Z. Nan and J.J. Zeng: Applied Clay Science Vol. 37(2007), pp.221-225.

Google Scholar

[17] R.A. Young and A.W. Hewat: Clay and the Clay Minerals Vol. 36(3)(1998), pp.225-232.

Google Scholar

[18] N.P. Hankins, S. Pliankarom and N. Hilal: Sep. Sci. Technol. Vol. 39 (15) (2004), pp.3639-3663.

Google Scholar

[19] A. Thornton, P. Pearce and S.A. Parsons: J. Hazard. Mater. Vol. 147(2007), pp.883-889.

Google Scholar

[20] M.J. Semmens and W.P. Martin: Water Res. Vol. 22 (1988), pp.537-542.

Google Scholar

[21] Y.S. Ho, T.H. Chiang and Y. M: Process Biochem. Vol. 40(2005), pp.119-124.

Google Scholar