Machining Characteristics of Magnetic Force-Assisted Electrolytic Machining for Polycrystalline Silicon

Article Preview

Abstract:

Wire electrical discharge machining (WEDM) of polycrystalline silicon (polysilicon) involves high-temperature melting that easily produces cracks on the silicon surface. This paper studies improvements of cracks and craters on surface of polysilicon after wire electrical discharge machining (WEDM) by magnetic force-assisted electrolytic machining (MFA-EM). The effects of different MFA-EM parameters on material removal and surface roughness are explored to understand the machining characteristics of MFA-EM and how magnetic field assistance contributes to high-efficiency and high-quality machining. Experimental results show that compared with standard EM, MFA-EM can achieve better machining efficiency and surface quality because MFA-EM can effectively enhance electrolyte circulation and replenishment, which contributes to better machining stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

523-529

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.Y. Peng and Y.S. Liao: Journal of Materials Processing Technology Vol. 140 (2003), p.274.

Google Scholar

[2] H. Takino, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomura and M . Kunieda: Precision Engineering Vol. 28 (3) (2004), p.314.

DOI: 10.1016/j.precisioneng.2003.12.002

Google Scholar

[3] H. Takino, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomura and M . Kunieda: Precision Engineering Vol. 29 (4) (2005), p.423.

DOI: 10.1016/j.precisioneng.2004.12.004

Google Scholar

[4] H. Takino, T. Ichinohe, K. Tanimoto, K. Nomurak and N. Kuniedai: Precision Engineering Vol. 31 (4) (2007), p.358.

Google Scholar

[5] D. Rakwal and E. Bamberg: Journal of Materials Processing Technology Vol. 209 (8) (2009), p.3740.

Google Scholar

[6] W. Wang, Z.D. Liu, Z.J. Tian, Y.H. Huang and Z.X. Lix: Journal of Materials Process Technology Vol. 209 (7) (2009), p.3149.

Google Scholar

[7] E.S. Lee: International Journal of Advanced Manufacturing Technology Vol. 16 (8) (2000), p.591.

Google Scholar

[8] H. Ramasawmy and L. Blunt: International Journal of Machine Tools & Manufacture Vol. 42 (5) (2002), p.567.

Google Scholar

[9] H. Ramasawmy and L. Blunt: International Journal of Machine Tools & Manufacture Vol. 42 (10) (2002), p.1129.

Google Scholar

[10] H. Ramasawmy and L. Blunt: International Journal of Advanced Manufacturing Technology Vol. 31 (11-12) (2007), p.1135.

Google Scholar

[11] C.A. Huang, Y.C. Chen and J.H. Hang: Corrosion Science Vol. 50 (2) (2008), p.480.

Google Scholar

[12] J.D. Kim, D.X. Jin and M.S. Choi: International Journal of Machine Tools & Manufacture Vol. 37 (4) (1997), p.401.

Google Scholar

[13] J. C. Fang, Z.J. Jin, W.J. Xu and Y.Y. Shi: Journal of Materials Processing Technology Vol. 129 (1-3) (2002), p.283.

Google Scholar

[14] J.D. Kim and M.S. Choi: International Journal of Machine Tools & Manufacture Vol. 37 (7) (1997), p.997.

Google Scholar

[15] T. Hryniewicz, R. Rokicki and K. Rokosz: Surface & Coating Technology Vol. 202 (9) (2008), p.1668.

Google Scholar

[16] P.S. Pa: Materials and manufacturing processes Vol. 24 (7-8) (2009), p.819.

Google Scholar

[17] T. Iida, H. Matsushima and Y. Fukunaka: Journal of the Electrochemical Society Vol. 154 (8) (2007), p. E112.

Google Scholar