Solution-Based Doping of Cobalt into ZnO Nanorods Membrane

Article Preview

Abstract:

Co-doped ZnO nanorods membrane was deposited at glass substrate in a simple chemical water bath. The morphology and crystal structure of the samples were characterized by SEM, TEM and XRD. It is shown that the ZnO rods membrane exhibits an excellent orientation along the c axis. X-ray diffraction study also indicates decrease in the lattice parameter after Co doping. The results of EDS and XPS verify that Co2+ is successfully doped into the lattice of nano ZnO rods. 2at% and 5at% Co doped ZnO rods behave stronger UV emission and weaker visible emission.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 328-330)

Pages:

1198-1201

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.Q. Cao, Y. Li, G.T. Duan: Cryst. Growth Des., Vol. 6 (2006) No. 5, p.1091.

Google Scholar

[2] W. K. Hong, J. I. Sohn, D.K. Hwang: Nano Lett., Vol. 8 (2008) No. 3, p.950.

Google Scholar

[3] X.M. Zhang, M. Y. Lu, Y. Zhang: Adv. Mater., Vol. 21 (2009) No. 27, p.2767.

Google Scholar

[4] M.P. Lu, J.H. Song, M.Y. Lu: Nano Lett., Vol. 9(2009) No. 3, p.1223.

Google Scholar

[5] R. Zhang, K. Sachin, S.Z. Zou: Cryst. Growth Des., Vol. 8 (2008) No. 2, p.381.

Google Scholar

[6] Y. Guo, X.B. Cao, X.M. Lan: J. Phys. Chem. C, Vol. 112 (2008) No. 24, p.8832.

Google Scholar

[7] Z. Zhang, J.B. Yi, J. Ding: J. Phys. Chem. C, Vol. 112 (2008) No. 26, p.9579.

Google Scholar

[8] M.J. Zhou, H.J. Zhu, Y. Jiao: J. Phys. Chem. C, Vol. 113 (2009) No. 20, p.8945.

Google Scholar

[9] F. X. Xiu, Z. Yang, L. J. Mandalapu: Appl. Phys. Lett., Vol. 87 (2005) No. 15, p.152101.

Google Scholar

[10] X.M. Zhang, W. Mai, Y. Zhang: Solid State Commun., Vol. 149 (2009) No. 7-8, p.293.

Google Scholar

[11] Y.Z. Zhang, L.H. Wu, H. Li: J. Alloys Compd., Vol. 473 (2009) No. 1-2, p.319.

Google Scholar

[12] K.T. Jacob, R. Shubhra, L. Rannesh: Int. J. Mater. Res., Vol. 98 (2007) No. 9, p.776.

Google Scholar

[13] C. Xu, J. Chun, D. Kim: Appl. Phys. Lett., Vol. 91 (2007) No. 15, p.153104.

Google Scholar

[14] J.P. Bonnelle, J. Grimblot, A. D'huysser: J. Electron Spectrosc. Relat. Phenom., Vol. 7 (1975) No. 6, p.151.

Google Scholar

[15] I. Alstrup, I. Chorkendorff, R. Candia: J. Catal., Vol. 77 (1982) No. 2, p.397.

Google Scholar

[16] B.J. Tan, K.J. Klabunde, P.M.A. Sherwood: J. Am. Chem. Soc. Vol. 113 (1991) No. 3, p.855.

Google Scholar

[17] G.C. Stevens, T., J. Edmonds: Less-Common Metals., Vol. 54 (1977) No. 1, p.321.

Google Scholar

[18] J.Y. Liu, Z. Guo, F.L. Meng: Cryst. Growth Des., Vol. 9(2009) No. 4, p.1716.

Google Scholar

[19] Z.G. Hu, M.Y. Duan, M. Xu: Acta Physica Sinca, Vol. 58 (2009) No. 2, p.1166.

Google Scholar

[20] G.D. Yuan, W.J. Zhang, J.S. Jie: Adv. Mater., Vol. 20 (2008) No. 22, p.168.

Google Scholar

[21] S. Venkataprasad Bhat, F.L. Deepak: Solid State Commun., Vol. 135 (2005) No. 6, p.345.

Google Scholar

[22] L.Y. Chen, S.H. Wu, Y.T. Yi: J. Phys. Chem. C, Vol. 113 (2009) No. 52, p.21572.

Google Scholar

[23] P. M. Ratheesh Kumar, K. P. Vijayakumar, C. Sudha Kartha J: Mater. Sci., Vol. 42 (2007) No. 8, p.2598.

Google Scholar

[24] E. Susie, D. C. Meier, R. Michael, Beversluis: ACS nano. Vol. 2 (2008) No. 2, p.368.

Google Scholar