Effect of Nano-Filler Network on the Rheological Behaviours of Poly(vinylidene fluoride) Nanocomposites

Article Preview

Abstract:

A nano-filler network constructed by layered silicates and multi-wall carbon nanotubes (MWCNTs) has been prepared. The structure of the network was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), transmission electron microscopy (TEM), and dynamic rheological test. The results showed that a plateau in the storage modulus at low frequency occurred, which indicated the pseudo solid-like behaviour for the sample with nano-filler network, and the jamming effect due to the nano-filler network dominated the viscoelatic behaviour at low frequency. This effect was sensitive to the frequency and decreased quickly with the increase of frequency. At the same time, the introduction of nanofillers and the presence of nano-filler network affected the complex viscosity and shear thinning too, especially at low frequency.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 328-330)

Pages:

1232-1238

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. H. Song and Q. A. Zheng: Polymer 51 (2010), 3262.

Google Scholar

[2] A. S. Sarvestani: Eur. Polym. J. 44 (2008), 263.

Google Scholar

[3] M. Surve, V. Pryamitsyn, and V. Ganesan: Macromolecules 40 (2007), 344.

Google Scholar

[4] G. Allegra, G. Raos, and M. Vacatello: Prog. in Polym. Sci. 33, (2008), 683.

Google Scholar

[5] Q. Zhang and L. A. Archer: Langmuir 18 (2002), 10435.

Google Scholar

[6] S. Granick and H. W. Hu: Langmuir 10 (1994), 3857.

Google Scholar

[7] S. Granick, H. W. Hu, and G. A. Carson: Langmuir 10 (1994), 3867.

Google Scholar

[8] S. S. Sternstein and A. J. Zhu: Macromolecules 35 (2002), 7262.

Google Scholar

[9] M. S. Ozmusul, C. R. Picu, S. S. Sternstein, and S. K. Kumar: Macromolecules 38 (2005), 4495.

Google Scholar

[10] A. R. Payne: J. Appl. Polym. Sci. 6 (1962), 57.

Google Scholar

[11] M. Manitiu, S. Horsch, E. Gulari, and R. M. Kannan, Polymer 50 (2009), 3786.

Google Scholar

[12] Y. R. Wang, J. H. Xu, S. E. Bechtel, and K. W. Koelling: Rheol. Acta 45 (2006), 919.

Google Scholar

[13] S. Huang, M. Wang, T. X. Liu, W. D. Zhang, W. C. Tjiu, C. B. He, and X. H. Lu: Polym. Eng. Sci. 49 (2009), 1063.

Google Scholar

[14] J. Y. Kim, D. K. Kim, and S. H. Kim: Euro. Polym. J. 45 (2009), 316-324.

Google Scholar

[15] M. Wang, W. Z. Wang, T. X. Liu, and W. D. Zhang: Compos. Sci. Technol. 68 (2008), 2498.

Google Scholar

[16] J. D. Thomin, P. Keblinski, and S. K. Kmnar: Macromolecules 41 (2008), 5988.

Google Scholar

[17] S. H. Lee, M. W. Kim, S. H. Kim, and J. R. Youn: Euro. Polym. J. 44 (2008), 1620.

Google Scholar

[18] A. I. Isayev, R. Kumar, and T. M. Lewis: Polymer 50 (2009), 250-260.

Google Scholar

[19] R. Kumar and A. I. Isayev: Polymer 51 (2010), 3503-3511.

Google Scholar

[20] P. Akcora, S. K. Kumar, J. Moll, S. Lewis, L. S. Schadler, Y. Li, B. C. Benicewicz, A. Sandy,S. Narayanan, J. Illavsky, P. Thiyagarajan, R. H. Colby, and J. F. Douglas: Macromolecules 43 (2010), 1003.

DOI: 10.1021/ma902072d

Google Scholar

[21] K. Yang, M. Y. Gu, Y. P. Guo, X. F. Pan, and G. H. Mu: Carbon 47 (2009), 1723.

Google Scholar

[22] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, and C. Galiotis: Carbon 46 (2008), 833.

DOI: 10.1016/j.carbon.2008.02.012

Google Scholar

[23] M. W. Marshall, S. Popa-Nita, and J. G. Shapter: Carbon 44 (2006), 1137.

Google Scholar

[24] T. M. Wu, Y. W. Lin, and C. S. Liao: Carbon 43 (2005), 734-740.

Google Scholar

[25] S. Keshk: Carbohyd. Polym. 74 (2008), 942-945.

Google Scholar

[26] J. Ma, M. H. Zhang, L. Y. Lu, X. Yin, J. Chen, and Z. Y. Jiang: Chem. Eng. J. 155 (2009), 800.

Google Scholar

[27] V. Mittal: J. Colloid. and Interf. Sci. 315 (2007), 135.

Google Scholar

[28] D. Wu, L. Wu, Y. Sun, and M. Zhang: J. Polym. Sci. Poly. Phys. 45 (2007), 3137.

Google Scholar

[29] G. X. Chen, Y. J. Li, and H. Shimizu: Carbon 45 (2007), 2334.

Google Scholar

[30] C. Y. Liu, J. Zhang, J. S. He, and G. H. Hu: Polymer 44 (2003), 7529.

Google Scholar

[31] D. H. Xu, Z. G. Wang, and J. F. Douglas: Macromolecules 41 (2008), 815.

Google Scholar

[32] H. H. Winter and M. Mours: in Neutron Spin Echo Spectroscopy Viscoelasticity Rheology; Vol. 134 (1997), pp.165-234.

DOI: 10.1007/3-540-68449-2_3

Google Scholar

[33] Y. S. Song: Rheol. Acta. 46 (2006), 231.

Google Scholar

[34] L. Incarnato, P. Scarfato, L. Scatteia, and D. Acierno: Polymer 45 (2004), 3487.

DOI: 10.1016/j.polymer.2004.03.005

Google Scholar

[35] B. J. Anderson and C. F. Zukoski: Macromolecules 42 (2009), 8370.

Google Scholar

[36] B. J. Anderson and C. F. Zukoski: Macromolecules 41 (2008), 9326.

Google Scholar

[37] V. Pryamitsyn and V. Ganesan: Macromolecules 39 (2006), 844.

Google Scholar