Preparation and Performance of RTV Coating for Anti-Pollution Flashover with Superhydrophobicity by Filling CaCO3/SiO2 Composite Particles into Silicone Rubber

Article Preview

Abstract:

Room temperature vulcanizing (RTV) silicone rubber coating with superhydrophobicity for anti-pollution flashover is prepared by filling silica-encapsulated calcium carbonate particles (CaCO3/SiO2 composite particles) into polydimethylsiloxane (PDMS) rubber. Two-step spraying technology is applied for fabricating the superhydrophobic RTV coating film on outdoor insulators. The primary spray coating provides basically the strong adhesion and certain hydrophobicity, and the second one produces the appropriate roughness structure and further enhances the superhydrophobicity. The water contact angle on the prepared RTV coating film is 165°and the sliding (rolling) angle of water droplet is about 5°, allowing water droplets to move easily on the coating surface and give self-cleaning function of the RTV coated insulator surface. The flashover voltage of insulators with superhydrophobic RTV coating is 29.95 kV, quite higher than that of insulators with common RTV coating (23.29) and that without RTV coating (11.34 kV).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 328-330)

Pages:

1263-1267

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. D. Jia, S. Fang and H. F. Gao etal.: IEEE Electrical Insulation Magazine, Vol. 24(2008), p.28.

Google Scholar

[2] H. Murase, T. Fujibayashi: Prog. Org. Coatings, Vol. 31 (1997), p.97.

Google Scholar

[3] W. Barthlott, C. Neinhuis: Planta, Vol. 202 (1997), p.1.

Google Scholar

[4] I. Woodward, W.C.E.V. Roucoules, J.P.S. Badyal: Langmuir, Vol. 23 (2007), p.8212.

Google Scholar

[5] X.J. Feng, L. Feng and M.H. Jin etal.: J. Am. Chem. Soc., Vol. 126 (2004), p.62.

Google Scholar

[6] H.M. Shang, Y. Wang and S.J. Limmer etal.: Thin Solid Films, Vol. 472 (2005), p.37.

Google Scholar

[7] K. Teshima, H. Sugimura and Y. Inoue etal.: Appl. Surf. Sci., Vol. 244 (2005), p.619.

Google Scholar

[8] H. Notsu, W. Kubo and I. Shitanda etal.: J. Mater. Chem., Vol. 15(2005), p.1523.

Google Scholar

[9] Y. Wu, H. Sugimura and Y. Inoue etal.: Chem. Vap. Deposition, Vol. 8(2002), p.47.

Google Scholar

[10] H. Li, X. Wang and Y. Song etal.: Angew. Chem., Vol. 113(2001), p.1793.

Google Scholar

[11] L. Feng, S. Li and H. Li etal.: Angew. Chem. Int. Ed., Vol. 41(2002), p.1221.

Google Scholar

[12] C. Guo, L. Feng and J. Zhai etal.: Chem. Phys. Chem., Vol. 5(2004), p.750.

Google Scholar

[13] X. Lu, C. Zhang and Y. Han: Macromol. Rapid Commun., Vol. 25(2004), p.1606.

Google Scholar

[14] Q. Xie, J. Xu and L. Feng etal.: Adv. Mater., Vol. 16(2004), p.302.

Google Scholar

[15] H.Y. Erbil, A.L. Demirel and Y. Avci: Science, Vol. 299(2003), p.1377.

Google Scholar

[16] H. Yabu, M. Takebayashi and M. Tanake etal.: Langmuir, Vol. 21(2005), p.3235.

Google Scholar

[17] J. X. Yang, J. Cheng and Z. R. Yang etal.: Applied Surface Science, Vol. 255(2009), p.3507.

Google Scholar