[1]
H-J. Ruben, in: A. NiKu-Lari, Advances in surface treatments, vol. 5, Pergamon Press, (1987) pp.239-256.
Google Scholar
[2]
T. Mori, K. Hirota, Y. Kawashima, Clarification of magnetic abrasive finishing mechanism. Journal of Materials Processing Technology, 143-144 (2003), pp.682-686.
DOI: 10.1016/s0924-0136(03)00410-2
Google Scholar
[3]
A. C. Wang, S. J. Lee, Study the characteristics of magnetic finishing with gel abrasive. International Journal of Machine Tools and Manufacture, 49 (2009), pp.1063-1069. ).
DOI: 10.1016/j.ijmachtools.2009.07.009
Google Scholar
[4]
Dhirendra K. Singh1, V.K. Jain, V. Raghuram, Parametric study of magnetic abrasive finishing process. Journal of Materials Processing Technology, 149 (2004), p.22–29. ).
DOI: 10.1016/j.jmatprotec.2003.10.030
Google Scholar
[5]
Ching-Tien Lin, Han-Ming Chow, Lieh-Dai Yang, Tseng Pai-Chung, 2009, AISI 304 characteristics of magnetic abrasive finishing, The Taiwan society for abrasive technology(TSAT), pp.227-234.
Google Scholar
[6]
Chang, F.M., Chou C.C., Chang C.F., 2009. Modeling and optimization of WEDM with different thickness 6061-T6 Aluminum alloy using wire of Zinc coated brass, The 26th National Conference on Mechanical Engineering of CSME, D02-006.
Google Scholar
[7]
Hewidy, M. S., El-Tawee, T. A., El-Safty, M. F., 2005, Modeling the machining parameters of WEDM of Inconel 601 using RSM. J. Mater. Process. Technol. 169, 328-336. ).
DOI: 10.1016/j.jmatprotec.2005.04.078
Google Scholar
[8]
Öktem, H., Erzurumlu, T., Kurtaran, H., (2005) Application of response surface methodology in the optimization of cutting condition for surface roughness. J. Mater. Process. Technol. 170, 11-16).
DOI: 10.1016/j.jmatprotec.2005.04.096
Google Scholar
[9]
T. Oppenheim, S. Tewfic, T. Scheck, V. Klee, S. Lomeli, W. Dahir, P. Youngren, N. Aizpuru, R. Clark, Jr., E.W. Lee, J. Ogren and O.S. Es-Said, On the correlation of mechanical and physical properties of 6061-T6 and 7249-T76 aluminum alloys, Engineering Failure Analysis, Volume 14, Issue 1, January 2007, Pages 218-225.
DOI: 10.1016/j.engfailanal.2005.10.013
Google Scholar
[10]
Shankar, M. Ravi; Chandrasekar, Srinivasan; Compton, W. Dale; King, Alexander H., Characteristics of aluminum 6061-T6 deformed to large plastic strains by machining, Materials Science & Engineering A Volume: 410-411, Complete, November 25, 2005, pp.364-368.
DOI: 10.1016/j.msea.2005.08.137
Google Scholar
[11]
Lee, Woei-Shyan; Lai, Chang-Horng; Chiou, Su-Tang, Numerical study on perforation behavior of 6061-T6 aluminum matrix composite, Journal of Materials Processing Technology Volume: 117, Issue: 1-2, November 2, 2001, pp.125-131.
DOI: 10.1016/s0924-0136(01)01166-9
Google Scholar
[12]
Karaoglu, S., Secgin, A. 2008, Sensitivity analysis of submerged arc welding process parameters, Journal of Materials Processing Technology, Vol. 202, pp.500-507.
DOI: 10.1016/j.jmatprotec.2007.10.035
Google Scholar
[13]
Kim, I. S., Son, K. J., Yang, Y. S., Yaragada, P. K. D. V, 2003, Sensitivity analysis for process parameters influencing weld quality in robotic GMA welding process, Journal of Materials Processing Technology, Vol. 140, pp.676-681.
DOI: 10.1016/s0924-0136(03)00725-8
Google Scholar
[14]
Chen Yan, Ju Dongying, 2005, Analysis of Magnetic Line for Design of Magnetic Abrasives Machining Device, Technology and Test, pp.101-103.
Google Scholar
[15]
D. G. Montgomery, Design and Analysis of Experiments, 5th ed., Wiley, New York, (2000).
Google Scholar
[16]
Chiang, K.T., Chang F.P., Tsai D.C. ( 2007), Modeling and analysis of the rapidly resolidified layer of SG cast iron in the EDM process through the response surface methodology, Journal of Materials Processing Technology, Vol. 182, p.525–533.
DOI: 10.1016/j.jmatprotec.2006.09.012
Google Scholar
[17]
H. Oktem, T. Erzurmlu and H. Kurtaran, Application of response surface methodology in the optimization of cutting conditions for surface roughness, J. Mater. Process. Technol. 170 (2005), p.11–16.
DOI: 10.1016/j.jmatprotec.2005.04.096
Google Scholar