Influence of Pulsed-DC Power Frequency on Mechanical Properties and High Speed Drilling Application of a-C:H:Zr-x Coatings

Article Preview

Abstract:

The a-C:H:Zr-x coatings are deposited on micro-drills using a closed field unbalanced magnetron (CFUBM) sputtering system with pulsed-DC power frequencies in the range 30 kHz to 110 kHz (the x in the term a-C:H:Zr-x is the frequency varied in the deposition process). The hardness of the various coatings is systematically explored. Additionally, the machining performance of the coated micro-drills is investigated by conducting high-speed through-hole drilling tests utilizing Printed Circuit Board (PCB) specimens. The experimental results reveal that the a-C:H:Zr-70 coating has the highest hardness (42 GPa), while the a-C:H:Zr-110 coating has the lowest hardness (26 GPa). In addition, it is shown that the a-C:H:Zr-70 coating increases the life of the micro-drill by a factor of three compared to that of an uncoated micro-drill.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 328-330)

Pages:

861-867

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Kamiya, H. Tanoue, H. Takikawa, M. Taki, Y. Hasegawa, M. Kumagai, Vacuum Vol. 83 (2009), p.510.

Google Scholar

[2] Y.F. Zheng, X.L. Liu, H.F. Zhang, Surf. Coat. Technol. Vol. 202 (2008), p.3011.

Google Scholar

[3] C. L. Chang, J. Y. Jao, T.C. Chang, W.Y. Ho, D.Y. Wang, Diam. Relat. Mater. Vol. 14 (2005), p.2127.

Google Scholar

[4] S. Zhanga, X. L. Buia, X.T. Zengb, X. Lic, Thin Solid Films Vol. 482 (2005), p.138.

Google Scholar

[5] D. Liu, G. Benstetter, E. Lodermeier, Thin Solid Films Vol. 436 (2003), p.244.

Google Scholar

[6] V. Kulikovsky, P. Bohac, F. Franc, A. Deineka, V. Vorlicek, L. Jastrabik, Diam. Relat. Mater. Vol. 10 (2001), p.1076.

Google Scholar

[7] H. Ronkainen, S. Varjus, J. Koskinen, K. Holmberg, Wear Vol. 249 (2000), p.260.

Google Scholar

[8] M. Pancielejko, W. Precht, A. Czyzniewski, Vacuum Vol. 53 (1999), p.57.

Google Scholar

[9] C. C. Chen, F. C-N Hong, Applied Surface Science Vol. 243 (2005), p.296.

Google Scholar

[10] Y. Pauleau, F. Thièry, Surf. Coat. Technol. Vol. 180-181 (2004), p.313.

Google Scholar

[11] K. Bewilogua, R. Wittorf, H. Thomsen, M. Weber, Thin Solid Films Vol. 447-448 (2004), p.142.

DOI: 10.1016/s0040-6090(03)01088-5

Google Scholar

[12] R. J. Narayan, Applied Surface Science Vol. 245 (2005), p.420.

Google Scholar

[13] Z. Wei, T. Akihiro, Tribol. Int. Vol. 37(2004), p.975.

Google Scholar

[14] Y. Liu, A. Erdenir, E. I. Meletis, Surf. Coat. Technol. Vol. 82(1996), p.48.

Google Scholar

[15] D. Sheeja, B. K. Tay, S.M. Krishnan, L. N. Nung, Diam. Relat. Mater. Vol. 12(2003), p.1389.

Google Scholar

[16] X. Yan, T. Xu, G. Chen, S. Yang, H. Liu, Applied Surface Science Vol. 236 (2004), p.328.

Google Scholar

[17] S.J. Harris, A.M. Weiner, W.J. Meng, Wear Vol. 211 (1997), p.208.

Google Scholar

[18] A. Yuichi, O. Naoto, Tribol. Int. 37 (2004), p.941.

Google Scholar

[19] Information on : http: /www. nanofilm. com. sg/eng/cs_Cutting_Tools 2. htm.

Google Scholar

[20] S. Zhang, X.T. Zeng, H. Xie, P. Hing, Surf. Coat. Technol. Vol. 123(2000), p.256.

Google Scholar

[21] F. Tuinstra, J. Koening, Raman spectrum of graphite, J. Chem. Phys. Vol. 53(1970), p.11260.

Google Scholar