Interaction between a Rigid Cylinder with a Piezoelectric Half-Space with Partial Adhesion

Article Preview

Abstract:

An axisymmetric problem of interaction of a rigid rotating flat ended punch with a transversely isotropic linear piezoelectric half-space is considered. The contact zone consists of an inner circular adhesion region surrounded by an outer annular slip region with Coulomb friction. Beyond the contact region, the surface of the piezoelectric half-space is free from load. With the aid of the Hankel integral transform, this mixed boundary value problem is formulated as a system of dual integral equations. By solving the dual integral equations, analytical expressions for the tangential stress and displacement, and normal electric displacement on the surface of the piezoelectric half-space are obtained. An explicit relationship between the radius of the adhesion region, the angle of the rotation of the punch, material parameters, and the applied loads is presented. The obtained results are useful for characterization of piezoelectric materials by micro-indentation and micro-friction techniques.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 33-37)

Pages:

333-338

Citation:

Online since:

March 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation: