Fabrication of Nanofibers via Crater-Like Electrospinning

Article Preview

Abstract:

Nanofibers, with its excellent performance, have played a significant role in the fields of filtration materials, medical materials, biomaterials, etc. In this work, a novel electrospinning technique, carter-like electrospinning, was presented and used to produce nanofibers. Multiple jets, which have the potential to increase the yield of nanofibers, were found in our experiments. The geometric properties, such as fiber diameter, diameter distribution, and surface morphology of the produced Nanofibers via this process, were characterized using a field emission scanning electron microscopy (FESEM). The results showed that the diameters of nanofibers ranged from several nanometers to one micron, and the nanofibers had average diameter of 84-550nm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 332-334)

Pages:

1257-1260

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ramakrishna, K. Fujihara, W.-E. Teo, T. Yong, Z. Ma and R. Ramaseshan, Materials Today: Vol. 9 (2006), p.40.

DOI: 10.1016/s1369-7021(06)71389-x

Google Scholar

[2] S. A. Riboldi, M. Sampaolesi, P. Neuenschwander, G. Cossu and S. Mantero, Biomaterials: Vol. 26 (2005), p.4606.

DOI: 10.1016/j.biomaterials.2004.11.035

Google Scholar

[3] J.-H. He, Y. Liu, L.-F. Mo, Y.-Q. Wan and L. Xu: Electrospun Nanofibres and Their Applications. (Smithers Rapra Technology, Shropshire, UK, 2008).

Google Scholar

[4] S. A. Hosseini and H. V. Tafreshi, Powder Technol.: Vol. 201 (2010), p.153.

Google Scholar

[5] H. Schreuder-Gibson, P. Gibson, K. Senecal, M. Sennett, J. Walker, W. Yeomans, D. Ziegler and P. P. Tsai, J Adv Mater: Vol. 34 (2002), p.44.

Google Scholar

[6] M. Sun, X. Li, B. Ding, J. Yu and G. Sun, J. Colloid Interface Sci.: Vol. 347 (2010), p.147.

Google Scholar

[7] A. Formhals, U.S. Patent No. 1975504 (1934).

Google Scholar

[8] J. Doshi and D. H. Reneker, J Electrostat: Vol. 35 (1995), p.151.

Google Scholar

[9] X.-H. Qin, S.-Y. Wang, T. Sandra and D. Lukas, Mater. Lett.: Vol. 59 (2005), p.3102.

Google Scholar

[10] Y. Liu, J.-H. He and J.-Y. Yu, Fibres Text East Eur: Vol. 15 (2007), p.30.

Google Scholar

[11] F. Cengiz and O. Jirsak, Fiber Polym: Vol. 10 (2009), p.177.

Google Scholar

[12] J. S. Varabhas, G. G. Chase and D. H. Reneker, Polymer: Vol. 49 (2008), p.4226.

Google Scholar

[13] A. L. Yarin and E. Zussman, Polymer: Vol. 45 (2004), p.2977.

Google Scholar

[14] Y. Liu and J.-H. He, Int J Nonlinear Sci Numl: Vol. 8 (2007), p.393.

Google Scholar

[15] Y. Liu, J.-H. He, L. Xu and J.-Y. Yu, J Polym Eng: Vol. 28 (2008), p.55.

Google Scholar

[16] Y. Liu, J.-H. He and J.-Y. Yu, Journal of Physics: Conference Series: Vol. 96 (2008), p.012001.

Google Scholar

[17] Y. Liu, J.-H. He, R. Wang, L. Xu and J.-Y. Yu, in: Proceedings of The Fiber Society 2009 Spring Conference, China Textile & Apparel Press, Shanghai, China, Vol. 1, (2009) pp.411-413.

Google Scholar

[18] R. Yang, J. He, L. Xu and J. Yu, Polymer: Vol. 50 (2009), p.5846.

Google Scholar

[19] Y. Liu, L. Dong, J. Fan, W.-M. Kang, R. Wang, L. Xu, B.-W. Cheng and J.-Y. Yu, Nonl Sci Lett A: Vol. 1 (2010), p.239.

Google Scholar

[20] Y. Liu, L. Dong, J. Fan, R. Wang and J. Y. Yu, J. Appl. Polym. Sci.: Vol.120 (2010), p.592.

Google Scholar

[21] Y. Liu, Z. Ren and J. He, Mater. Sci. Technol.: Vol. 26 (2010), p.1309.

Google Scholar

[22] L. Dong, W. Shou, Y. Liu, R. Wang and R.-d. Chen, Applied Mechanics and Materials: Vol. 29-32 (2010), p.1943.

Google Scholar

[23] L. Dong, Y. Liu, J. Fan, W.-M. Kang, R. Wang and B.-W. Cheng, Nonl Sci Lett D: Vol. 1 (2010), p.153.

Google Scholar

[24] Y. Liu, Z. Ren and S. Wang, Int. J. Nonlinear Sci. Num. Simul: Vol. 11 (2010), p.625.

Google Scholar