Effect of Fiber Diameter on Thermal Conductivity of the Electrospun Carbon Nanofiber Mats

Article Preview

Abstract:

Carbon nanofiber for various applications is being actively investigated while the thermal properties of carbon nanofiber mat with different fiber diameters are not well known. In this paper, carbon nanofiber mats with diameter of 220~1000nm were fabricated via electrospinning method. Then the effects of polyacrylnitrile solution concentration, supplied voltage, and spinning distance on fiber diameter were studied. According to the results of thermal properties measurements by laser flash technique, the carbon nanofiber mats possess great potentials in applications for thermal management materials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 332-334)

Pages:

672-677

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kuo-Kuang Cheng, Tzu-Chien Hsu, Li-Heng Kao: J. Mater. Sci. Vol. 46 (2011), p.1870

Google Scholar

[2] Te-Yu Wei, Shih-Yuan Lu, Yu-Cheng Chang: J. Phys. Chem. C. Vol. 113 (2009), p.7424

Google Scholar

[3] L.K. Sun, H.F. Cheng, Z.Y. Chu, Y.J. Zhou, Z.L. Sun: Journal of Inorganic Materials Vol. 24 (2009), p.310, In Chinese

Google Scholar

[4] Nayandeep K. Mahanta, Alexis R. Abramson, Max L. Lake, David J. Burton, John C. Chang, Helen K. Mayer, Jessica L. Ravine: Carbon Vol. 48(2010), p.4457

DOI: 10.1016/j.carbon.2010.08.005

Google Scholar

[5] Phillip W. Gibson, Calvin Lee, Frank Ko, Darrell Reneker: Journal of Engineering Fibers and Fabrics Vol. 2 (2007), p.32

Google Scholar

[6] A. Frenot, I.S. Chronakis: Curr Opin Colloid Inteface Sci. Vol. 8 (2003), p.64

Google Scholar

[7] D.H. Reneker, A.L. Yarin: Polymer Vol. 49 (2008), p.2387

Google Scholar

[8] J. M. Deitzel, J. Kleinmeyer, D. Harris, N. C. BeckTan: Polymer Vol. 42 (2001), p.261

Google Scholar

[9] X. H. Zong, K. Kim, D. F. Fang, S. F.Ran, B. S. Hsiao, B. Chu: Polymer Vol. 43 (2002), p.4403

Google Scholar

[10] J. Sutasinpromprae, S. Jitjaicham, M. Nithitanakul, C. Meechaisue, P. Supaphol: Polym. Int. Vol. 55 (2006), p.825

DOI: 10.1002/pi.2040

Google Scholar

[11] C.J. Buchko, L.C. Chen, Y. Shen, D.C. Martin: Polymer Vol. 40 (1999), p.7397

Google Scholar

[12] X.M. Mo, C.Y. Xu, M. Kotaki, S. Ramakrishna: Biomaterials. Vol. 25 (2004), p.1883

Google Scholar

[13] G. F. Zou, D. W. Zhang, C. Dong, H. Li, K. Xiong, L. F Fei: Carbon Vol. 44 (2006), p.828

Google Scholar

[14] D. Roy, M. Chhowalla, H. Wang, N. Sano, I. Alexandrou, T.W. Clyne: Chem Phys Lett. Vol. 373 (2003), p.52

Google Scholar

[15] K.S. Yang, C. Kim, S.H. Park, J.I. Cho, D.Y Lee, W.J. Lee: J Raman Spectrosc. Vol. 35 (2004), p.928

Google Scholar

[16] Yan Ma, Song Wang, Zhao-hui Chen: Carbon Vol. 49 (2011), p.2869

Google Scholar

[17] J.P. Boudou, J.I. Paredes, A. Cuesta, A. Martinez-Alonso, J.M.D. Tascon: Carbon Vol. 41 (2003), p.41

Google Scholar