Influence of Synthesis Technics and Additives on Cerium Ion Compound Valence

Article Preview

Abstract:

In the system of Ce(NO3)3·6H2O and urea solution during homogeneous precipitation method, hydrothermal homogeneous precipitation coupling method and homogeneous precipitation method with additive, X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to study and characterize the product structures and morphologies. The outer electron configurations and the energy conservation theory were used to analyze the reasons for stability of products and valence state change of cerium ions. The results showed that synthesis technics and additives had a great effect on the cerium ion compound valence. The products were orthorhombic Ce2O(CO3)2·H2O with Valence Ш and orthorhombic CeO(CO3)2·H2O with valence Ⅵ by using homogeneous precipitation method and hydrothermal homogeneous precipitation coupling method, respectively. If an additive (triethanolamine or triethylamine) was added into the homogeneous precipitation system, the products changed into a mixture of orthorhombic CeO(CO3)2·H2O with Valence Ⅵ and cubic CeO2 with valence Ⅳ. It showed that triethanolamine or triethylamine had strong oxidizing properties and played a catalyst role in the reaction.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Pages:

1051-1055

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. M. Zhu, J .S. Qiu, Y. L. Jiang. J. Dalian Univ. Technol., 50(2010), p.167.

Google Scholar

[2] H. Y. Chang, H. I. Chen. J. Cryst. Growth, 283(2005), p.457.

Google Scholar

[3] X. D. Zhou, W. Huebner, H. U. Anderson. Chem. Mater., 15(2003), p.378.

Google Scholar

[4] X. D. Zhou, W. Huebner, H. U. Anderson. Appl. Phys. Lett., 80(2002), p.3814.

Google Scholar

[5] F. H Scholes, A. E. Hughes, S. G. Hardin., et al. Chem. Mater., 19(2007), p.2321.

Google Scholar

[6] Z. L.Wang, X. D.Feng J. Phys. Chem. B, 107 (2003), p.13563.

Google Scholar

[7] K.Zhou, Z.Yang, S.Yang..Chem.Mater., 19 (2007), p.1215.

Google Scholar

[8] D.Zhang, C.Pan, L.Shi, et al.Microporous Mesoporous Mater., 117(2009), p.193.

Google Scholar

[9] Z. G. Yan, C. H. Yan. J. Mater. Chem., 18(2008), p.5046.

Google Scholar

[10] X. B. Zhao, J. You, X. W. Lu, Z. G. Chen. J. Inorg. Mater, 26 (2011), p.159.

Google Scholar

[11] Z. B. Li, C. H. Yin, Q. Zhao. J. Xuzhou Inst. Technol., 24(2009), p.76.

Google Scholar

[12] A. J. Tang, X. Y. Guan, S. Gao, J. Y. Yang. Drying Tech Equip., 7(2009), p.175.

Google Scholar

[13] D. F. zhou, J. F. Ye, D. F. Li. Chem. J. Chin. U, 28(2007), p.2026.

Google Scholar

[14] D. F. Zhou, Q. B. Bo, Q. Y. Wang. Chem. J. Chin. U, 26 (2005), p.1791.

Google Scholar

[15] D. A. Andersson, S. I. Simak, N. V. Skorodumova. Proc. Natl. Acad. Sci USA, 103(2006), p.3518.

Google Scholar

[16] S. Shi, R. H. Lu, H. Q. Wang. Chem. Rep., 12(1998), p.51.

Google Scholar

[17] Y. Mei, Y. B. Han, Y. Li, W. Wang, Z. R. Nie, Mater. Lett., 60, p.3068 (2006).

Google Scholar

[18] S. C. Chen: Important Inorganic Chemical Reaction( Wuhan Sci Tech Publications, Wuhan 1963).

Google Scholar

[19] Y. Mei, Y. B. Han, Z. R. Nie. J Chem. Ind. Eng. (Chin.)., 57( 2006), p.2241.

Google Scholar

[20] Y. Mei, J. P. Yan, Z. R. Nie. Spectrosc. Spectr. Anal. 30(2010), p.270.

Google Scholar

[21] N. R. Yang. Test Technology of Inorganic Nonmetal Materials(higher edu Publications, Beijing 2000).

Google Scholar

[22] H. M. Chen, Y. R. Ma, F. H. Liao, J. .M. Ma, L. M. Qi. Acta Phy. Chim.Sin., 19(2003), p.326.

Google Scholar

[23] H. Yang. Chin. Rare Earths, 31 (2010), p.87.

Google Scholar

[24] Y. Mei, Y. B. Han, W. Wang, Z.R. Nie.Chin. J. Chem.Phys., 19(2006), p.269.

Google Scholar