p.1454
p.1459
p.1465
p.1469
p.1473
p.1477
p.1481
p.1485
p.1489
Cutting Parameters Optimization Based on Radial Basis Function Neural Network and Particle Swarm Optimization
Abstract:
A technique of cutting parameters optimization based on radial basis function neural networks and partical swarm optimization is presented in the paper. Taking experimental data as samples, the model between processing parameter and processing function was established based on radial basis function neural networks. Then, the cutting parameters is optimized by particle swarm optimization. With the combination of radial basis function neural network and particle swarm optimization, and making good use of the respective virtues,the model was solved.The experiment shows that the actual output as same as the predictive output and the mixes algorithm can realize optimization of cutting parameter real time in workplace.
Info:
Periodical:
Pages:
1473-1476
Citation:
Online since:
September 2011
Authors:
Price:
Сopyright:
© 2011 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: