Ac Conductivity and Dielectric Properties of Hexanoyl Chitosan-LiClO4-TiO2 Composite Polymer Electrolytes

Article Preview

Abstract:

Hexanoyl chitosan: LiClO4: TiO2 composite electrolyte films were prepared by the solution cast technique. The ac conductivity and dielectric properties of the samples prepared have been studied in the frequency range from 100 Hz to 1 MHz over the temperature range from 273 to 333 K. The exponent s in the Jonscher’s universal power law, σ(ω)=σdc+Aωs was analyzed as a function of temperature and the analysis suggests that the conduction mechanism can be interpreted based on the correlated barrier hopping (CBH) model. The barrier heights, WM were calculated. The values of WM are found to decrease with increasing temperature in the same manner as the exponent s. Both dielectric constant and dielectric loss decrease with increase in frequency and increase with increase in temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Pages:

873-880

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide), Polymer 14(11) (1973) 589.

DOI: 10.1016/0032-3861(73)90146-8

Google Scholar

[2] F.M. Gray, Polymer Electrolytes, The Royal Society of Chemistry, UK, 1997.

Google Scholar

[3] C.P. Fonseca, S. Neves, Characterization of polymer electrolytes based on poly(dimethyl siloxane-co-ethylene oxide), J. Power Sources 104 (2002) 85-89.

DOI: 10.1016/s0378-7753(01)00902-8

Google Scholar

[4] S. Rajendran, O. Mahendran, R. Kannan, Lithium ion conduction in plasticized PMMA-PVdF polymer blend electrolytes, Materials Chemistry and Physics 74 (2002) 52-57.

DOI: 10.1016/s0254-0584(01)00400-x

Google Scholar

[5] F. Yuan, H.Z. Chen, H.Y. Yang, H.Y. Li, M. Wang, PAN-PEO solid polymer electrolytes with high ionic conductivity, Materials Chemistry and Physics 89 (2005) 390-394.

DOI: 10.1016/j.matchemphys.2004.09.032

Google Scholar

[6] G.A. Nazri, S.G. Meibuhr, Effect of γ-radiation on the structure and ionic conductivity of 2-(-2-methoxy-ethoxy-ethoxy)polyphosphazane + LiCF3SO3, J. Electrochem. Soc. 136 (1989) 2450-2454.

DOI: 10.1149/1.2097423

Google Scholar

[7] Z. Uchimoto, Z. Ogumi, F.R. Takehara, J. Foulkes, Ionically conductive thin polymer films prepared by plasma polymerization, J. Electrochem. Soc. 137 (1990) 35-40.

DOI: 10.1149/1.2086429

Google Scholar

[8] N. Kobayashi, N. Kubo, R. Hirohashi, Control of ionic conductivity in solid polymer electrolyte by photo irradiation, Electrochim. Acta 37 (1992) 1515-1516.

DOI: 10.1016/0013-4686(92)80101-q

Google Scholar

[9] L. Fan, Z. Dang, C.W. Nan, M. Li, Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends, Electrochim. Acta 48 (2002) 205-209.

DOI: 10.1016/s0013-4686(02)00603-5

Google Scholar

[10] J.E. Weston, B.C.H. Steele, Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes, Solid State Ionics 7 (1987) 75-79.

DOI: 10.1016/0167-2738(82)90072-8

Google Scholar

[11] B. Kumar, L.G. Scanlon, R.J. Spry, On the origin of conductivity enhancement in polymer-ceramic composite electrolytes, J. Power Sources 96 (2001) 337-342.

DOI: 10.1016/s0378-7753(00)00665-0

Google Scholar

[12] P.A.R.D. Jayathilaka, M.A.K.L. Dissanayake, I. Albinson, B.E. Mellander, Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system, Electrochim. Acta 47 (2002) 3257-3268.

DOI: 10.1016/s0013-4686(02)00243-8

Google Scholar

[13] F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, M.A. Hendrickson, Role of ceramic fillers in enhancing the transport of composite polymer electrolytes, Electrochim. Acta 46 (2001) 2457-2461.

DOI: 10.1016/s0013-4686(01)00458-3

Google Scholar

[14] G. Gnana Kumar, Pil kim, Ae rhan kim, Kee suk Nahm, R. Nimma Elizabeth, Structural, thermal and ion transport studies of different particle size nanocomposite fillers incorporated PVdF-HFP hybrid membranes, Materials Chemistry and Physics 115 (2009) 40-46.

DOI: 10.1016/j.matchemphys.2008.11.023

Google Scholar

[15] Vanchiappan Aravindan, P. Vickraman, Lithium fluoroalkylphosphate based novel composite polymer electrolytes (NCPE) incorporated with nanosized SiO2 filler, Materials Chemistry and Physics 115 (2009) 251-257.

DOI: 10.1016/j.matchemphys.2008.11.062

Google Scholar

[16] Tan Winie, A.K. Arof, FT-IR studies on interactions among components in hexanoyl chitosan-based polymer electrolytes, Spectrochim. Acta A 63 (2006) 677-684.

DOI: 10.1016/j.saa.2005.06.018

Google Scholar

[17] F.H. Muhammad, R.H.Y. Subban, Tan Winie, Electrical Studies on Hexanoyl Chitosan-based Nanocomposite Polymer Electrolytes, AIP Conference Proceedings 1136 (2009) 61-65.

DOI: 10.1063/1.3160219

Google Scholar

[18] M.J. Rice, W.L. Roth, Ionic transport in super ionic conductors: a theoretical model, J. Solid State Chemistry 4 (1972) 294-310.

DOI: 10.1016/0022-4596(72)90121-1

Google Scholar

[19] G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Dielectric dispersion and ac conductivity in-Iron particles loaded-polymer composites, Composites Part A 34 (2003) 1187-1198.

DOI: 10.1016/j.compositesa.2003.08.002

Google Scholar

[20] R. Murugaraj, G. Govindaraj, D. George, Ac conductivity and its scaling behavior in lithium and sodium bismuthate glasses, Materials Letters 57 (2003) 1656-1661.

DOI: 10.1016/s0167-577x(02)01047-9

Google Scholar

[21] Z. Zong, Y. Kimura, Takahashi, M.H. Yamane, Characterization of chemical and solid state structures of acylated chitosans, Polymer 41 (2000) 899-906.

DOI: 10.1016/s0032-3861(99)00270-0

Google Scholar

[22] R. Mishra, K.J. Rao, Electrical conductivity studies of poly(ethyleneoxide)-poly(vinylalcohol) blends, Solid State Ionics 106 (1998) 113-127.

DOI: 10.1016/s0167-2738(97)00493-1

Google Scholar

[23] M. Siekierski, W. Wieczorek, J. Przyluski, AC conductivity studies of composite polymeric electrolytes, Electrochim. Acta 43 (10-11) (1998) 1339-1342.

DOI: 10.1016/s0013-4686(97)10040-8

Google Scholar

[24] R. Ondo-Ndong, G. Ferblantier, F. Pascal-Delannoy, A. Boyer, A. Foucaran, Electrical properties of zinc oxide sputtered thin films, Microelectronics J. 34 (2003) 1087-1092.

DOI: 10.1016/s0026-2692(03)00198-8

Google Scholar

[25] F.H. Abd El-kader, W.H. Osman, K.H. Mahmoud, M.A.F. Basha, Dielectric investigations and ac conductivity of polyvinyl alcohol films doped with europium and terbium chloride, Physica B 403 (2008) 3473-3484.

DOI: 10.1016/j.physb.2008.05.009

Google Scholar

[26] A.E. Bekheet, N.A. Hegab, Ac conductivity and dielectric properties of Ge20Se75In5 films, Vacuum 83 (2009) 391-396.

DOI: 10.1016/j.vacuum.2008.05.023

Google Scholar

[27] Lobna M. Sharaf El.Deen, The ac conductivity studies for Cu2O-Bi2O3 glassy system, Materials Chemistry and Physics 65 (2000) 275-281.

DOI: 10.1016/s0254-0584(00)00244-3

Google Scholar

[28] J.M. Stevels, The electrical properties of glass, Hantbuch der physic (1957) 350-391.

Google Scholar

[29] S. Ebrahim, A.H. Kashyout, M. Soliman, Ac and Dc conductivities of polyaniline/poly vinyl formal blen films, Current Applied Physics 9 (2009) 448-454.

DOI: 10.1016/j.cap.2008.04.007

Google Scholar

[30] C. Fanggao, G.A. Saunders, E.F. Lambson, R.N. Hampton, G. Carini, G. Di Marco, M. Lanza, Temperature and frequency dependencies of the complex dielectric constant of poly(ethylene oxide) under hydrostatic pressure, J. Polymer Science: Part B: Polymer Physics 34 (1996) 425-433.

DOI: 10.1002/(sici)1099-0488(199602)34:3<425::aid-polb3>3.0.co;2-s

Google Scholar

[31] M.M. El-Nahass, A.M. Farid, K.F. Abd El-Rahman, H.A.M. Ali, Ac conductivity and dielectric properties of bulk tin phthalocyanine dichloride (SnPcCl2), Physica B 403 (2008) 2331-2337.

DOI: 10.1016/j.physb.2007.12.015

Google Scholar

[32] Tan Winie, A.K. Arof, Dielectric behaviour and ac conductivity of LiCF3SO3 doped H-chitosan polymer films, Ionics 10 (2004) 193-199.

DOI: 10.1007/bf02382816

Google Scholar