Fabrication and Magnetic Properties of Fe3O4 Nanobranches via a Simple Solvothermal Method

Article Preview

Abstract:

Magnetite (Fe3O4) nanobranches were synthesized using an improved solvothermal technique in mixed ethanol and water solvent. Structural and magnetic properties were systematically investigated. X-ray diffraction results showed that the sample was single-phase spinel structure. The results of scanning electronic microscopy exhibited that the grains were regular like-branch with sizes from 3 to 6 μm in length and in diameter between 50 and 200 nm. The composition determined by energy dispersive spectroscopy was very close to the stoichiometry of Fe3O4. The saturation magnetizations (Ms) at 10 and 300 K of the synthesized Fe3O4 nanobranches were much lower than the theoretical values. On one hand, it could be explained by obstructive magnetizing along their non-easy magnetic axes by the shape anisotropy of Fe3O4 nanobranches, on the other hand, lesser Ms can also be understood by the existence of antisite defects.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 335-336)

Pages:

934-939

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. C. Voogt, T. T. M. Palstra, L. Niesen, O. C. Rogojanu, M. A. James and T. Hibma, Phys. Rev. B 57 (1998) 8107.

Google Scholar

[2] I. Zǔtić, J. Fabian and S. D. Sarma, Rev. Mod. Phys. 76 (2004) 323.

Google Scholar

[3] D. A. Bazylinski and R. B. Frankel, Nat. Rev. Microbiol. 2 (2004) 217.

Google Scholar

[4] Y. Yin and A. P. Alivisatos, Nature (London) 437 (2005) 664.

Google Scholar

[5] M. Fonin, Y. S. Dedkov, R. Pentcheva, U. RÄudiger and G. GÄuntherodt, J. Phys. Condens. Matter 19 (2007) 315217.

Google Scholar

[6] B. Y. Geng, J. Z. Ma, X. W. Liu, Q. B. Du, M. G. Kong and L. D. Zhang, Appl. Phys. Lett. 90 (2007) 043120.

Google Scholar

[7] P. H. Linh, P. V. Thach, N. A. Tuan, N. C. Thuan, D. H. Manh, N. X. Phuc and L. V. Hong, J. Phys.: Conf. Ser. 187 (2009) 012069.

DOI: 10.1088/1742-6596/187/1/012069

Google Scholar

[8] F. Walz, J. Phys.: Condens. Matter. 14 (2002) R285.

Google Scholar

[9] G. Bate, in: E. D. Wohlfarth (Ed.), Ferromagnetic Material, North-Holland, Amsterdam, (1980).

Google Scholar

[10] M. T. Chang, L. J. Chou, C. H. Hsieh, Y. L. Chueh, Z. L. Wang,Y. Murakami and D. Shindo, Adv. Mater. 19 (2007) 2290.

Google Scholar

[11] T. Seckin, S. Vural and S. Köytepe, Polym. Bull. 64 (2010) 115.

Google Scholar

[12] S. J. Jang, W. J. Kong and H. Zeng, Phys. Rev. B 76 (2007) 212403.

Google Scholar

[13] E. Matijevic, Chem. Mater. 5 (1993) 412.

Google Scholar

[14] A. M. Morales and C. M. Lieber, Science 279 (1998) 208.

Google Scholar

[15] W. Han, S. Fan, Q. Li and Y. Hu, Science 277 (1997) 1287.

Google Scholar

[16] Y. D. Li, Y. Ding and Z. Y. Wang, Adv. Mater. 11 (1999) 847.

Google Scholar

[17] A. P. A. Faiyas, E. M. Vinod, J. Joseph, R. Ganesan and R. K. Pandey, J. Magn. Magn. Mater. 322 (2010) 400.

Google Scholar

[18] R. Massart, IEEE Trans. Magn. 17 (1981) 1247.

Google Scholar

[19] P. Tartaj and C. Serna, Chem. Mater. 14 (2002) 4396.

Google Scholar

[20] M. I. Mendelson, J. Am. Ceram. Soc. 52 (1969) 443.

Google Scholar

[21] W. W. Zhou, K. B. Tang, S. Y. Zeng and Y. X. Qi, Nanotechnology 19 (2008) 065602.

Google Scholar

[22] D. H. Han, J. P. Wang and H. L. Luo, J. Magn. Magn. Mater. 136 (1994) 176.

Google Scholar

[23] J. Wang, Q. W. Chan, C. Zeng and B. Y. Hou, Adv. Mater. 16 (2004) 137. Figure captions: Figure 1. XRD pattern of Fe3O4 nanobranches. Inset: crystal structure sketch map of Fe3O4 ferrite composed of tetrahedral (A) and octahedral (B) sites. Figure 2. (A) SEM images of Fe3O4 nanobranches; (B) and (C) are higher magnification SEM images; (D) EDS analysis image of Fe3O4 nanobranches. Figure 3. M-H hysteresis loops at 10 and 300 K of Fe3O4 nanobranches. The inset contain the minor loops. Figure 1 Zhenfa Zi et al. Figure 2 Zhenfa Zi et al. Figure 3 Zhenfa Zi et al.

DOI: 10.7717/peerj-cs.735/fig-9

Google Scholar