Optical and Electrical Properties of Some Organic Thin Films for Optoelectronic Applications

Article Preview

Abstract:

Organic semiconductor thin films of bis-(2-methyl-8-quinolinolato)-4-(phenyl-phenolato) -aluminium-(III) (BAlq), N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine (NPB), and tris-(8- hydroxyquinoline) aluminum (Alq) were prepared by the vacuum sublimation technique. The optical properties in the UV-visible region of the thin films were investigated by optical transmittance and absorbance spectra. The optical energy gaps were obtained from direct allowed transitions at room temperature by Tauc’s law. The Urbach energy and the slope of Urbach edge were estimated by the Urbach-edges method, respectively. Furthermore, the current-voltage characteristics of organic thin films were analyzed, and the different slopes in the lower and higher voltage regions were observed. From the experimental studies, the effective carrier mobility, free carrier density, and electrical conductivity were also evaluated respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

426-429

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.W. Tang: Appl. Phys. Lett. Vol. 48 (1986), p.183

Google Scholar

[2] X. Li and D. Tang: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 28 (2009), p.9

Google Scholar

[3] A.J. Breeze, Z. Schlesinger, S.A. Carter and P.J. Brock: Phys. Rev. B Vol. 64 (2001), p.125205

Google Scholar

[4] Z. Zhong, J. Gu, X. He and F. Sun: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 30 (2011), p.64

Google Scholar

[5] C.J. Brabec: Sol. Energy Mater. Sol. Cells Vol. 83 (2004), p.273

Google Scholar

[6] X. Li and Y. Hu: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 29 (2010), p.6

Google Scholar

[7] M. Berggren and O. Inganäs: Science Vol. 267 (1995), p.1479

Google Scholar

[8] Z. Zhong: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 28 (2009), p.73

Google Scholar

[9] S. Chen, S. Wei, X. He and F. Sun: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 28 (2009), p.43

Google Scholar

[10] J.H. Burroughes, D.D.C. Bradley and A.R. Brown: Nature Vol. 347 (1990), p.539

Google Scholar

[11] J. Gu, Z. Zhong, X. He and S. Chen: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 30 (2011), p.70

Google Scholar

[12] L.M. Huang, T.C. Wen and A. Gopalan: Mater. Chem. Phys. Vol. 77 (2002), p.726

Google Scholar

[13] V.G. Kozlov, V. Bulović, P.E. Burrows and S.R. Forrest: Nature Vol. 389 (1997), p.362

Google Scholar

[14] D. Chen, Q. Li and J. Huang: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 29 (2010), p.14

Google Scholar

[15] F. Urbach: Phys. Rev. Vol. 92 (1953), p.1324

Google Scholar

[16] F. Sun and S. Hui: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 28 (2009), p.10

Google Scholar

[17] H. Mahr: Phys. Rev. Vol. 125 (1962), p.1510

Google Scholar

[18] J. Gu, Z. Zhong, X. He and F. Sun: J. S.-Cent. Univ. Natl. (Nat. Sci. Ed.) Vol. 28 (2009), p.30

Google Scholar

[19] A.J. Campbell, D.D.C. Bradley and D.G. Lidzey: J. Appl. Phys. Vol. 82 (1997), p.6326

Google Scholar