Synthetic Aperture Focusing Technique and Contrast Source Inversion Algorithm Applied in Elastic Wave Imaging

Article Preview

Abstract:

In this paper the linear synthetic aperture focusing technique (SAFT), the nonlinear contrast source inversion (CSI) algorithm and the CSI algorithm with extended approaches, such as frequency approach and regularization approach, are applied to reconstruct a complicated target immersed in water from the experimental elastic wave data. The inversion results from these datasets using multi-bistatic measurement, which are obtained in the acoustic wave case and the pressure and vertically polarized shear (P-SV) wave case, verify the CSI algorithm with extended approaches is an accurate and promising method for elastic wave imaging.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

402-408

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Touhei, T. Kiuchi and K. Iwasaki, A fast volume integral equation method for the direct/inverse problem in elastic wave scattering phenomena, Int. J. Sol. S., vol. 46, pp.3860-3872, (2009).

DOI: 10.1016/j.ijsolstr.2009.07.010

Google Scholar

[2] K. J. Langenberg, M. Brandfass, R. Hannemann, Ch. Hofmann, T. Kaczorowski, J. Kostka, R. Marklein, K. Mayer and A. Pitsch, Inverse scattering with acoustic, electromagnetic, and elastic waves as applied in Nondestructive Evaluation, Scalar and Vector Wave field Inverse Problems, Armand Wirgin, Ed., Vienna: Springer Publication, pp.59-118, (1999).

DOI: 10.1007/978-3-7091-2486-4_2

Google Scholar

[3] R. E. Kleinman and P. M. van den Berg, A contrast source inversion method, Inverse Pr., vol. 13, pp.1607-1620, (1997).

DOI: 10.1088/0266-5611/13/6/013

Google Scholar

[4] A. Abubarkar and P. M. van den Berg, Iterative forward and inverse algorithms based on domain integral equations for three dimensional electric and magnetic objects, J. Comput. Phys., vol. 195, pp.236-262, (2004).

DOI: 10.1016/j.jcp.2003.10.009

Google Scholar

[5] J. Miao, Linear and nonlinear inverse scattering algorithms applied in 2-D electromagnetics and elastodynamics, Ph.D. dissertation, Uni. Kassel, Germany, (2008).

Google Scholar

[6] A. Abubarkar, W. Hu, P. M. van den Berg and TM. Habashy, A finite-difference contrast source inversion method, Inverse Pr., vol. 24, pp.065004-17, (2008).

DOI: 10.1088/0266-5611/24/6/065004

Google Scholar

[7] J. Miao, R. Marklein and J. Li, Application of the linear and nonlinear inversion algorithms on two-dimensional experimental electromagnetic data, Proceedings of the international conference on microwave technology and computational Electromagnetics, Beijing, China, Nov. 3-6, (2009).

DOI: 10.1049/cp.2009.1325

Google Scholar

[8] H. Egger and A. Leitão, Nonlinear regularization methods for ill-posed problems with piecewise constant or strongly varying solutions, Inverse Pr., vol. 25, pp.115014-19, (2009).

DOI: 10.1088/0266-5611/25/11/115014

Google Scholar

[9] M. Bachmayr and M. Burger, Iterative total variation schemes for nonlinear inverse problems, Inverse Pr., vol. 25, pp.105004-26, (2009).

DOI: 10.1088/0266-5611/25/10/105004

Google Scholar