[1]
T. Touhei, T. Kiuchi and K. Iwasaki, A fast volume integral equation method for the direct/inverse problem in elastic wave scattering phenomena, Int. J. Sol. S., vol. 46, pp.3860-3872, (2009).
DOI: 10.1016/j.ijsolstr.2009.07.010
Google Scholar
[2]
K. J. Langenberg, M. Brandfass, R. Hannemann, Ch. Hofmann, T. Kaczorowski, J. Kostka, R. Marklein, K. Mayer and A. Pitsch, Inverse scattering with acoustic, electromagnetic, and elastic waves as applied in Nondestructive Evaluation, Scalar and Vector Wave field Inverse Problems, Armand Wirgin, Ed., Vienna: Springer Publication, pp.59-118, (1999).
DOI: 10.1007/978-3-7091-2486-4_2
Google Scholar
[3]
R. E. Kleinman and P. M. van den Berg, A contrast source inversion method, Inverse Pr., vol. 13, pp.1607-1620, (1997).
DOI: 10.1088/0266-5611/13/6/013
Google Scholar
[4]
A. Abubarkar and P. M. van den Berg, Iterative forward and inverse algorithms based on domain integral equations for three dimensional electric and magnetic objects, J. Comput. Phys., vol. 195, pp.236-262, (2004).
DOI: 10.1016/j.jcp.2003.10.009
Google Scholar
[5]
J. Miao, Linear and nonlinear inverse scattering algorithms applied in 2-D electromagnetics and elastodynamics, Ph.D. dissertation, Uni. Kassel, Germany, (2008).
Google Scholar
[6]
A. Abubarkar, W. Hu, P. M. van den Berg and TM. Habashy, A finite-difference contrast source inversion method, Inverse Pr., vol. 24, pp.065004-17, (2008).
DOI: 10.1088/0266-5611/24/6/065004
Google Scholar
[7]
J. Miao, R. Marklein and J. Li, Application of the linear and nonlinear inversion algorithms on two-dimensional experimental electromagnetic data, Proceedings of the international conference on microwave technology and computational Electromagnetics, Beijing, China, Nov. 3-6, (2009).
DOI: 10.1049/cp.2009.1325
Google Scholar
[8]
H. Egger and A. Leitão, Nonlinear regularization methods for ill-posed problems with piecewise constant or strongly varying solutions, Inverse Pr., vol. 25, pp.115014-19, (2009).
DOI: 10.1088/0266-5611/25/11/115014
Google Scholar
[9]
M. Bachmayr and M. Burger, Iterative total variation schemes for nonlinear inverse problems, Inverse Pr., vol. 25, pp.105004-26, (2009).
DOI: 10.1088/0266-5611/25/10/105004
Google Scholar