Automatic Classification of Dayside Aurora in All-Sky Images Using a Multi-Level Texture Feature Representation

Abstract:

Article Preview

In this paper, we propose an aurora classification method using a multi-level feature representation aimed to capture both global and local texture information, and to reduce the feature space dimension substantially. First-order and second-order statistics are computed for an input image and its low-frequency scaled images at three lower levels obtained using wavelet decomposition. The features include gray level distribution, co-occurrence matrix features, and run-length matrix features. A support vector machine (SVM) classifier was trained and tested on a Chinese Arctic Yellow River Station dayside aurora image dataset. Classification performance was evaluated and compared with those of k-nearest neighbor (KNN) classifiers and back-propagation neural networks (BPNN). To explore the possibility of using a smaller feature space, we used a Minimum-Redundancy Max-Relevance feature selection strategy. The result shows that there is only indistinct performance decrease by reducing the feature vector from a total of 88 to the most discriminatory 38 features. This proves that our multi-level feature representation is very robust.

Info:

Periodical:

Advanced Materials Research (Volumes 341-342)

Edited by:

Liu Guiping

Pages:

158-162

DOI:

10.4028/www.scientific.net/AMR.341-342.158

Citation:

S. M. Han et al., "Automatic Classification of Dayside Aurora in All-Sky Images Using a Multi-Level Texture Feature Representation", Advanced Materials Research, Vols. 341-342, pp. 158-162, 2012

Online since:

September 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.