Production and Characterization of Egg Yolk Antibodies (Igy) against Two Specific Spoilage Organisms (SSO) in Aquatic Products

Article Preview

Abstract:

Using whole cells as antigens, specific egg yolk antibodies (IgY) were generated respectively against Shewanella putrefaciens and Pseudomonas fluorescens, two important spoilage bacteria in aquatic products. The obtained IgY exhibited a high and specific affinity to corresponding antigen bacteria. A concentration-dependent antimicrobial activity of the specific IgY was observed in liquid medium. Compared to control groups, the cell number of S. putrefaciens and P. fluorescens was reduced approximately 84.7% and 88.1%, respectively, in the presence of specific IgY (contain salts) at a concentration of 200 mg/mL after 8 h of incubation. Similar growth inhibitory effects were also observed in solid medium, in which the inhibition ratio was calculated as 52.8% and 62.5% for S. putrefaciens and P. fluorescens, respectively, in the presence of specific IgY at a concentration of 100 mg/mL. These results indicated a great potential of specific IgY as a safe and natural antimicrobial agent for aquatic food preservations.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

519-529

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. N. Lee, H. H. Sunwoo, K. Menninen, and J. S. Sim, In vitro studies of chicken egg yolk antibody (IgY) against Salmonella enteritidis and Salmonella typhimurium, J. Poultry Sci., vol. 81, p.632–641, (2002).

DOI: 10.1093/ps/81.5.632

Google Scholar

[2] X. H. Li, X. Y. Yang, and A. L. Dai, Development and application of chicken egg yolk antibody against Candida albicans, Journal of Fujian Agriculture and Forestry University, vol. 35, pp.628-631, (2006).

Google Scholar

[3] Y. H. Zhen, L. J. Jin, J. Guo, X. Y. Li, Y. N. Lu, J. Chen, and Y. P. Xu, Characterization of specific egg yolk immunoglobulin (IgY) against mastitis-causing Escherichia coli, J. Vet Microbiol, vol. 130, pp.126-133, (2008).

DOI: 10.1016/j.vetmic.2007.12.014

Google Scholar

[4] Y. H. Zhen, L. J. Jin, X. Y. Li, J. Guo, Z. Li, B. J. Zhang, R. Fang, and Y. P. Xu, Efficacy of specific egg yolk immunoglobulin (IgY) to bovine mastitis caused by Staphylococcus aureus, J. Vet Microbiol., vol. 133, pp.317-322, (2009).

DOI: 10.1016/j.vetmic.2008.07.016

Google Scholar

[5] X. P. Zeng, Y. Y. Fu, and N. Z. Kuang, Stability and activity of anti-Candida albicans IgY in vivo, Immunological Journal, vol. 21, pp.303-305, (2005).

Google Scholar

[6] Y. J. Yang, and J. X. Zhou, Studies and Development of Immunoglobulin Yolk, J. China Food Additives, vol. 2, pp.1-7, (1999).

Google Scholar

[7] D. Carlander, H. Kollberg, P. Wejaker, and A. Larsson, Peroral immunotheraphy with yolk antibodies for the prevention and treatment of enteric infections, J. Immunol Res., vol. 21, p.1–6, (2000).

DOI: 10.1385/ir:21:1:1

Google Scholar

[8] E. Nilsson, A. Amini, B. Wretlind, and A. Larsson, Pseudomonas aeruginosa infections are prevented in cystic fibrosis patients by avian antibodies binding Pseudomonas aeruginosa flagellin, J. Chromatogr B., vol. 856, pp.75-80, (2007).

DOI: 10.1016/j.jchromb.2007.05.029

Google Scholar

[9] M. E. Thomas, D. Klinkenberg, A. A. Bergwerff, E. Eerden, J. A. Stegeman, and A. Bouma, Evaluation of suspension array analysis for detection of egg yolk antibodies against Salmonella Enteritidis, J. Prev Vet Med., vol. 95, pp.137-143, (2010).

DOI: 10.1016/j.prevetmed.2010.02.003

Google Scholar

[10] Y. P. He, Q. P. Zhong, and S. Q. Zhong, Production of specific chicken egg yolk immunoglobulin against Shigella dysenteriae, J. Immunol., vol. 22, pp. S164-S166, (2006).

Google Scholar

[11] L. Z. Jin, K. B. Samuel, R. M. Ronald, and A. F. Andrew, In vitro inhibition of adhesion of enterotoxigenic Escherichia coli K88 to piglet intestinal mucus by egg-yolk antibodies, J. Fems Immunol Med Mic., vol. 21, pp.313-321, (1998).

DOI: 10.1111/j.1574-695x.1998.tb01179.x

Google Scholar

[12] K. Y. Sugita, M. Ogawa, S. Arai, S. Kumagaik, S. Igimi, and M. Shimizu, Blockade of Salmonella enteritidis passage across the basolateral barriers of human intestinal epithelial cells by specific antibody, J. Microbiol Immunol., vol. 44, p.473–479, (2000).

DOI: 10.1111/j.1348-0421.2000.tb02522.x

Google Scholar

[13] M. Gürtler, U. Methner, H. Kobilke, and K. Fehlhaber, Effect of orally administered egg yolk antibodies on Salmonella enteritidis contamination of hen's eggs, J. Vet Med B., vol. 51, p.129–134, (2004).

DOI: 10.1111/j.1439-0450.2004.00739.x

Google Scholar

[14] M. Kuroki, M. Ohta, Y. Ikemori, F.C.J. Icatlo, C. Kobayashi, H. Yokoyama, and Y. Kodama, Field evaluation of chicken egg yolk immunoglobulins specific for bovine rotavirus in neonatal calves, J. Arch Virol., vol. 142, p.843–851, (1997).

DOI: 10.1007/s007050050123

Google Scholar

[15] Coleman, Oral administration of chicken yolk immunoglobulins to lower somatic cell count in the milk of lactating ruminants, U.S. patent 5, 585, 098, December (1996).

DOI: 10.1016/s0734-9750(97)88763-0

Google Scholar

[16] K. Horie, N. Horie, A. M. Abdou, J. O. Yang, S. S. Yun, H. N. Chun, C. K. Park, M. Kim, and H. Hatta, Suppressive Effect of Functional Drinking Yogurt Containing Specific Egg Yolk Immunoglobulin on Helicobacter pylori in Humans, J. Dairy Sci., vol. 87, p.4073–4079, (2004).

DOI: 10.3168/jds.s0022-0302(04)73549-3

Google Scholar

[17] R. Schade, X. Y. Zhang, and H. R. Terzolo, Use of IgY antibodies in human and veterinary medicine, J. Bioactive Egg Compounds, vol. 25, pp.213-222, (2007).

DOI: 10.1007/978-3-540-37885-3_25

Google Scholar

[18] J. X. Sui, L. M. Cao, and H. Lin, Antibacterial activity of egg yolk antibody (IgY) against Listeria monocytogenes and preliminary evaluation of its potential for food preservation, J. Sci Food Agr, In press.

DOI: 10.1002/jsfa.4381

Google Scholar

[19] L. Gram, and H. H. Huss, Microbiological spoilage of fish and fish products, Int J. Food Microbiol., vol. 33, p.121–137, (1996).

DOI: 10.1016/0168-1605(96)01134-8

Google Scholar

[20] L. Gram, and P. Dalgaard, Fish spoilage bacteria-problems and solutions, J. Curr Opin Biotech., vol. 13, p.262–266, (2002).

DOI: 10.1016/s0958-1669(02)00309-9

Google Scholar

[21] P. Dalgaard, Qualitative and quantitative characterization of spoilage bacteria from packed fish, J. Food Microbio. l., vol. 26, pp.319-333, (1995).

DOI: 10.1016/0168-1605(94)00137-u

Google Scholar

[22] G. Q. Yao, and L. P. He, Iced preservation and the shelf life of Pomfret argenteus and Pseudosciaena crocea, Journal of Shanghai Fisheries University, vol. 15, pp.216-221, (1992).

Google Scholar

[23] L. Gram, N. C. Wedell, and H. H. Huss, The bacteriology of fresh and spoiling Lake Victorian Nile perch(Lates niloticus), J. Food Microbiol., vol. 10, pp.303-316, (1990).

DOI: 10.1016/0168-1605(90)90077-i

Google Scholar

[24] M. Gennari, S. Tomaselli, and V. Cotrona, The microflora of fresh and spoiled sardines ( Sardina pilchadus ) caught in Adriatic (Mediterranean) sea and stored in ice, J. Food Microbiol., vol. 16, pp.15-28, (1999).

DOI: 10.1006/fmic.1998.0210

Google Scholar

[25] P. K. Surendran, J. Joseph, A. V. Shenoy, P. A. Perigreen, L. Mahadeva, and K. Gopakumar, Studies on spoilage of commercially important tropical fishes under iced storage, J. Fish Res., vol. 7, pp.1-9, (1989).

DOI: 10.1016/0165-7836(89)90002-7

Google Scholar

[26] Q. Y. Guo, X. S. Yang, Z. Xue, and J. J. Wu, Bacterial flora changes on cultured Pseudosciaena crocea during chilled storage, Journal of Fishery Sciences of China, vol. 14, pp.301-308, (2007).

Google Scholar

[27] S. C. Liu, K. Zhou, S. Y. Zhong, P. L. Li, C. W. Ma, and Z. H. Peng, Isolation and identification of pathogens and spoilage bacteria on cultured Hybrid Tilapia, J. Food Science, vol. 29, pp.327-331, (2008).

Google Scholar

[28] D. J. Newman, and G. M. Cragg, Advanced preclinical and clinical trials of natural products and related compounds from marine sources, J. Curr Med Chem., vol. 11, p.693–713, (2004).

DOI: 10.2174/0929867043364982

Google Scholar

[29] G. M. Castro, G. Braker, L. Farías, and O. Ulloa, Communities of nirS-type denitrifiers in the water column of the oxygen minimum zone in the eastern South Pacific, J. Environ Microb., vol. 7, p.298–306, (2005).

DOI: 10.1111/j.1462-2920.2005.00809.x

Google Scholar

[30] J. X. Sui, H. Lin, L. M. Cao, J. X. Wang, and G. H. Wang, Preparation and characterization of chicken egg yolk antibodies against Listeria monocytogenes, J. Food and Fermentation Industries, vol. 35, p.1–6, (2009).

Google Scholar

[31] M. Y. Xu, J. Guo, X. Y. Zhong, W. Cao, and G. P. Sun, A broad specturm decoloration shewanella new species-shewanella cinica, J. Acta Microbiologica Sinica, vol. 44, pp.561-566, (2004).

Google Scholar

[32] E. L. Kim, N. H. Choi, V. K. Bajpai, and S. C. Kang, Synergistic effect of nisin and garlic shoot juice against Listeria monocytogenes in milk, J. Food Chem, vol. 110, pp.375-382, (2008).

DOI: 10.1016/j.foodchem.2008.02.013

Google Scholar

[33] N. Solomakos, A. Govaris, P. Koidis, and N. Botsoglou, The antimicrobial effect of thyme essential oil, nisin, and their combination against Listeria monocytogenes in minced beef during refrigerated storage, J. Food Microbiol, vol . 25, pp.120-127, (2008).

DOI: 10.1016/j.fm.2007.07.002

Google Scholar