[1]
G. Soberon-Chavez and B. Palmeros, Pseudomonas lipases: molecular genetics and potential industrial applications, Critical Reviews in Microbiology, vol. 20, no. 2, pp.95-105, (1994).
DOI: 10.3109/10408419409113549
Google Scholar
[2]
P. Rathi, R.K. Saxena, and R. Gupta, A novel alkaline lipase from Burkholderia cepacia for detergent formulation, Process Biochemistry, vol. 37, no. 2, pp.187-192, October, (2001).
DOI: 10.1016/s0032-9592(01)00200-x
Google Scholar
[3]
J.G. Sandana Mala, N.R. Kamini, and R. Puvanakrishnan, Strain improvement of Aspergillus niger for enhanced lipase production, The Journal of General and Applied Microbiology, vol. 47, no. 4, pp.181-186, June, (2001).
DOI: 10.2323/jgam.47.181
Google Scholar
[4]
F. Hasan, A.A. Shah, and A. Hameed, Industrial applications of microbial lipases, Enzyme and Microbial Technology, vol. 39, no. 2, pp.235-251, June, (2006).
DOI: 10.1016/j.enzmictec.2005.10.016
Google Scholar
[5]
A. Gromada and J. Fiedurek, Selective isolation of Aspergillus niger mutants with enhanced glucose oxidase production, Journal of applied microbiology, vol. 82, no. 5, pp.648-652, May, (1997).
DOI: 10.1111/j.1365-2672.1997.tb03597.x
Google Scholar
[6]
M. Prabakaran, et al, Comparative studies on the enzyme activities of wild and mutant fungal strains isolated from sugarcane field, Indian Journal of Science and Technology, vol. 2, no. 11, pp.46-49, November, (2009).
DOI: 10.17485/ijst/2009/v2i11.3
Google Scholar
[7]
J.Z. Liu, et al, Screening and mutagenesis of Aspergillus niger for the improvement of Glucose-6-phosphate dehydrogenase production, Applied Biochemistry and Microbiology, vol. 39, no. 5, pp.493-496, September, (2003).
Google Scholar
[8]
K.M. Umehara, et al, Behavior of alkaline lipase on detergency, Yukagaku, vol. 39, pp.322-326, (1990).
Google Scholar
[9]
T. Vorderwülbecke, K. Kieslich, and H. Erdmann, Comparison of lipases by different assays, Enzyme and Microbial Technology, vol. 14, no. 8, pp.631-639, August, (1992).
DOI: 10.1016/0141-0229(92)90038-p
Google Scholar
[10]
U.K. Winkler, and M. Stuckmann, Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens, Journal of Bacteriology, vol. 138, no. 3, pp.663-670, June, (1979).
DOI: 10.1128/jb.138.3.663-670.1979
Google Scholar
[11]
G. Benzonana, and P. Desnuelle, Action of some effectors on the hydrolysis of long-chain triglycerides by pancreatic lipase, Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, vol. 164, no. 1, pp.47-58, September, (1968).
DOI: 10.1016/0005-2760(68)90069-6
Google Scholar
[12]
M.K. Chelius, and R.J. Wodzinski, Strain improvement of Aspergillus niger for phytase production, Applied Microbiology and Biotechnology, vol. 41, no. 1, pp.79-83, (1994).
DOI: 10.1007/bf00166085
Google Scholar
[13]
Y. Naka, and T. Nakamura, The effects of serum albumin and related amino acids on pancreatic lipase and bile salts inhibited microbial lipases, Bioscience, Biotechnology, and Biochemistry, vol. 56, no. 7, pp.1066-1070, July. (1992).
DOI: 10.1271/bbb.56.1066
Google Scholar
[14]
R.C. Lawrence, T.F. Fryer, and B. Reiter, Rapid method for the quantitative estimation of microbial lipases, Nature, vol. 213, pp.1264-1265, March. (1967).
DOI: 10.1038/2131264a0
Google Scholar