[1]
So-Young Won, Eun-Hee Park, Anti-inflammatory and related pharmacological activities of cultured mycelia and fruiting bodies of Cordyceps militaris, J. Ethnopharmacol, vol. 96, no. 3, pp.555-561, January (2005).
DOI: 10.1016/j.jep.2004.10.009
Google Scholar
[2]
Maki Hattori, Shigeki Isomura, Eiji Yokoyama; Minoru Ujita, Akira Hara, Extracellular Trypsin-like Proteases Produced by Cordyceps militaris, J BIOSCI BIOENG, vol. 100, no. 6, pp.631-636, August (2005).
DOI: 10.1263/jbb.100.631
Google Scholar
[3]
Yerra Koteswara Rao, Chia-Hsien Chou, Yew-Min Tzeng, A simple and rapid method for identification and determination of cordycepin in Cordyceps militaris by capillary electrophoresis, ANAL CHIM ACTA, vol. 566, no. 2, pp.253-258, May (2006).
DOI: 10.1016/j.aca.2006.02.071
Google Scholar
[4]
Yuxiang Gu, Zunsheng Wang, Suxia Li, Qinsheng Yuan, Effect of multiple factors on accumulation of nucleosides Cordyceps militaris, Food Chem, vol. 102, no. 4, pp.1304-1309, (2007).
DOI: 10.1016/j.foodchem.2006.07.018
Google Scholar
[5]
Li Cui, Mingsheng Dong, Xiaohong Chen, Mei Jiang, Xin Lv, Guijun Yan, A novel fibrinolytic enzyme from Cordyceps militaris, a Chinese traditional medicinal mushroom, World J Microbiol Biotechnol, vol. 24, no. 4, pp.483-489, August (2008).
DOI: 10.1007/s11274-007-9497-1
Google Scholar
[6]
J S Zhu, GM Halpern, KJones, The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: part I, J Altern Complement Med, vol. 4, no. 3, pp.289-303, (1998).
DOI: 10.1089/acm.1998.4.3-289
Google Scholar
[7]
Chun Kiat Pua, Nazimah Sheikh Abd. Hamid, Chin Ping Tan, Hamed Mirhosseini, Russly Bin Abd. Rahman, Gulam Rusul, Optimization of drum drying processing parameters for production of jackfruit (Artocarpus heterophyllus) powder using response surface methodology, LWT-Food SCI TECHNOL, vol. 43, no. 2, pp.343-349, March (2010).
DOI: 10.1016/j.lwt.2009.08.011
Google Scholar
[8]
Jyothi AN, Sreekumar J, Moorthy SN, Sajeev MS, Response Surface Methodology for the Optimization and Characterization of Cassava Starch-graft-Poly(acrylamide), Starch-Starke, vol. 62, no. 1, pp.18-27, January (2010).
DOI: 10.1002/star.200900157
Google Scholar
[9]
Guilherme A. Moreira, Gabriela A. Micheloud, Alejandro J. Beccaria, Hector C. Goicoechea., Optimization of the Bacillus thuringiensis var. kurstaki HD-1 δ-endotoxins production by using experimental mixture design and artificial neural networks, Biochem Eng. J, vol. 35, no. 1, pp.48-55, July (2007).
DOI: 10.1016/j.bej.2006.12.025
Google Scholar
[10]
Yongfen Ran, Guangchi Xiong, Shisheng Li, Liaoyuan Ye, Study on deformation prediction of landslide based on genetic algorithm and improved BP neural network, Kybernetes, vol. 39, no. 8, pp.1245-1254, (2010).
DOI: 10.1108/03684921011063529
Google Scholar
[11]
C. Sivapathasekaran, Soumen Mukherjee, Arja Ray, Ashish Gupta, Ramkrishna Sen, Artificial neural network modeling and genetic algorithm based medium optimization for the improved production of marine biosurfactant, Bioresour Technol, vol. 101, no. 8, pp.2884-2887, April (2010).
DOI: 10.1016/j.biortech.2009.09.093
Google Scholar
[12]
Weiliang Guo, et al, Optimization of fermentation medium for nisin production from Lactococcus lactis subsp lactis using response surface methodology (RSM) combined with artificial neural network-genetic algorithm (ANN-GA), African J. Biotechnol, vol. 9, no. 38, pp.6264-6272, Semptember (2010).
Google Scholar