Visible-Light Illumination Assisted Ethanol Electrooxidation on AuNi/TNAs Electrocatalyst

Article Preview

Abstract:

Gold deposits on Ni/TNAs and Ni/Ti were successfully prepared by displacement- reaction method. The result shows that the activity of all the catalysts for ethanol electrooxidation is improved by visible-light illumination and AuNi-40 min/TNAs exhibits the best long-time catalytic ability. The enhanced activity of the anodes catalyzing ethanol electrooxidation under illumination can be attributed to the plasmonic photocatalytic mechanism based on the excitation of Au, the assistant catalytic effects of TiO2 and/or Ni and the improving conductivity of the substrate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-65

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.B. Wang, P.J. Zuo, G. J. Wang, C.Y. Du and G.P. Yin: J. Phys. Chem. C Vol. 112 (2008), p.6582.

Google Scholar

[2] Q. He, W. Chen, S. Mukerjee, S. Chen and F. Laufek: J. Power Sources Vol. 187 (2009), p.298.

Google Scholar

[3] L.D. Zhu, T.S. Zhao, J.B. Xu and Z.X. Liang: J. Power Sources Vol. 187 (2009), p.80.

Google Scholar

[4] F. Ksar, L. Ramos, B. Keita, L. Nadjo, P. Beaunier and H. Remita: Chem. Mater. Vol. 21 (2009), p.3677.

DOI: 10.1021/cm901364w

Google Scholar

[5] F. Hu, F. Ding, S. Song and P. Shen: J. Power Sources Vol. 163 (2006), p.415.

Google Scholar

[6] Q.Z. Jiang, X. Wu, Z.F. Ma and X.Y. Zhu: Catal. Lett. Vol. 124 (2008), p.434.

Google Scholar

[7] H. Song, X. Qiu and F. Li: Electrochim. Acta Vol. 53 (2008), p.3708.

Google Scholar

[8] H. Song, X. Qiu, D. Guo and F. Li: J. Power Sources Vol. 178 (2008), p.97.

Google Scholar

[9] K. Mallick, M. J. Witcomb and M. S. Scurrell: Appl. Catal. A Vol. 259 (2004), p.163.

Google Scholar

[10] P. Naknam, A. Luengnaruemitchai and S. Wongkasemjit: Energy Fuels Vol. 23 (2009), p.5084.

Google Scholar

[11] X. Y. Liu, B. J. Xu, J. Haubrich, R. J. Madix and C. M. Friend: J. Am. Chem. Soc. Vol. 131 (2009), p.5757.

Google Scholar

[12] D. H. Nagaraju and V. Lakshminarayanan: J. Phys. Chem. C Vol. 113 (2009), p.14922.

Google Scholar

[13] L.D. Zhu, T.S. Zhao, J.B. Xu and Z.X. Liang: J. Power Sources Vol. 187 (2009), p.80.

Google Scholar

[14] P.Y. Sheng, G. A. Bowmaker and H. Idriss: Appl. Catal. A Vol. 261 (2004), p.171.

Google Scholar

[15] Y. M. Wu, J. L. Zhang, L. Xiao and F. Chen: Appl. Catal. B Vol. 88 (2009), p.525.

Google Scholar

[16] K. Q. Sun, S. W. Luo, N. Xu and B. Q. Xu: Catal. Lett. Vol. 124 (2008), p.238.

Google Scholar

[17] Z.H. Xu and J.G. Yu: Nanotechnology Vol. 21 (2010), p.245501.

Google Scholar

[18] Y. Huang, H. Qiu, H. Qian, F. P. Wang, L. Q. Pan, P. Wu, Y. Tian and X. L. Huang: Thin Solid Films Vol. 472 (2005) p.302.

Google Scholar

[19] H.F. Zhuang, C.J. Lin, Y.K. Lai, L. Sum and J. Li: Environ. Sci. Technol. Vol. 41 (2007), p.4735.

Google Scholar

[20] X. Xiang, X.T. Zu, S. Zhu and L.M. Wang: Appl. Phys. Lett. Vol. 84 (2004), p.52.

Google Scholar

[21] B.Z. Tian, C.Z. Li, F. Gu and H.B. Jiang: Catal. Commun. Vol. 10 (2009), p.925.

Google Scholar

[22] Y. Wu, J. Zhang, L. Xiao and F. Chen: Appl. Catal. B Vol. 88 (2009), p.525.

Google Scholar

[23] T. Hyeon, S. Han, Y.E. Sung, K.W. Park and Y.W. Kin: Angew. Chem., Int. Ed. Vol. 42 (2003), p.4352.

Google Scholar

[24] J.M. Macak, P.J. Barczuk, H. Tsuchiya, M.Z. Nowakowska, A. Ghicov, M. Chojak, S. Bauer, S. Virtanen, P.J. Kulesza and P. Schmuki: Electrochem. Commun. Vol. 7 (2005), p.1417.

DOI: 10.1016/j.elecom.2005.09.031

Google Scholar

[25] Z. Zhang, Y. Yuan, Y. Fang, L. Liang, H. Ding, G. Shi and L. Jin: J. Electroanal. Chem. Vol. 610 (2007), p.179.

Google Scholar

[26] Y. Tian and T. Tatsuma: J. Am. Chem. Soc. Vol. 127 (2005), p.7632.

Google Scholar