Numerical Investigations of Ultrasonic Scattering from Voids in Composite Materials Based on Random Void Model

Article Preview

Abstract:

Ultrasonic attenuation coefficient is firstly calculated utilizing the finite difference time domain method based on a novel 2-D RVM for carbon fiber reinforced plastic (CFRP) composite materials. The results show that the void morphology has detrimental effect on ultrasonic attenuation. Even at the fixed porosity, ultrasonic attenuation coefficient fluctuates due to the randomness of void morphology in CFRP composite materials. This work significantly helps to understand ultrasonic scattering mechanism of voids and formulation of CFRP composite material properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

639-643

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. F. Ying and R. Truell, Scattering of a Plane Longitudinal Wave by a Spherical Obstacle in an Isotropically Elastic Solid, Journal of Applied Physics, vol. 27, pp.1086-1097, (1956).

DOI: 10.1063/1.1722545

Google Scholar

[2] D. E. W. Stone and B. Clarke, Ultrasonic attenuation as a measure of void content in carbon-fibre reinforced plastics, Non-Destructive Testing, vol. 8, pp.137-145, (1975).

DOI: 10.1016/0029-1021(75)90023-7

Google Scholar

[3] B. G. Martin, Ultrasonic attenuation due to voids in fibre-reinforced plastics, NDT International, vol. 9, pp.242-246, (1976).

DOI: 10.1016/0308-9126(76)90004-3

Google Scholar

[4] B. G. Martin, Ultrasonic wave propagation in fiber-reinforced solids containing voids, Journal of Applied Physics, vol. 48, pp.3368-3373, (1977).

DOI: 10.1063/1.324176

Google Scholar

[5] J. M. Hale and J. N. Ashton, Ultrasonic attenuation in voided fibre-reinforced plastics, NDT International, vol. 21, pp.321-326, (1988).

DOI: 10.1016/0308-9126(88)90190-3

Google Scholar

[6] E. A. Birt and R. A. Smith, A review of NDE methods for porosity measurement in fibre-reinforced polymer composites, Insight, vol. 46, pp.681-686, (2004).

DOI: 10.1784/insi.46.11.681.52280

Google Scholar

[7] D. K. Hsu and S. M. Nair, Evaluation of porosity in graphite-epoxy composite by frequency dependence of ultrasonic attenuation, in Review of Progress in Quantitative Nondestructive Examination, New York, 1987, pp.1175-1184.

DOI: 10.1007/978-1-4613-1893-4_135

Google Scholar

[8] Z. Guerdal, A. P. Tomasino, and S. B. Biqqers, Effects of processing induced defects on laminate response: Interlaminar tensile strength, SAMPE Journal, vol. 27, pp.39-49, (1991).

Google Scholar

[9] I. M. Daniel, S. C. Wooh, and I. Komsky, Quantitative porosity characterization of composite materials by means of ultrasonic attenuation measurements, Journal of Nondestructive Evaluation, vol. 11, pp.1-8, (1992).

DOI: 10.1007/bf00566012

Google Scholar

[10] H. Jeong, Effects of Voids on the Mechanical Strength and Ultrasonic Attenuation of Laminated Composites, Journal of Composite Materials, vol. 31, pp.276-292, February 1, 1997 (1997).

DOI: 10.1177/002199839703100303

Google Scholar

[11] L. Lin, X. Zhang, J. Chen, Y. F. Mu, and X. M. Li, A morphology-dependent model applied to predict void content of composites based on ultrasonic attenuation coefficient: Random Void Model, Applied Physics A: Materials Science & Processing. DOI: 10. 1007/s00339-010-6061-x, (2010).

DOI: 10.1007/s00339-010-6061-x

Google Scholar

[12] Y. F. Mu, X. Zhang, L. Lin, H. T. Tian, G. P. Guo, and X. M. Li, Investigations on CFRP Porosity by Using Ultrasonic Testing Based on Random Pores Model, Journal of Mechanical Engineering, vol. 46, pp.22-26, (2010).

DOI: 10.3901/jme.2010.04.022

Google Scholar

[13] L. T. Ikelle, S. K. Yung, and F. Daube, 2-D random media with ellipsoidal autocorrelation functions, Geophysics, vol. 58, pp.1359-1372, (1993).

DOI: 10.1190/1.1443518

Google Scholar

[14] R. S. Schechter, H. H. Chaskelis, R. B. Mignogna, and P. P. Delsanto, Real-Time Parallel Computation and Visualization of Ultrasonic Pulses in Solids, Science, vol. 265, pp.1188-1192, (1994).

DOI: 10.1126/science.265.5176.1188

Google Scholar

[15] D. Z. Wo, Encyclopedia Of Composites. Beijing: Chemical Industry Press, (2002).

Google Scholar

[16] M. R. Wisnom, T. Reynolds, and N. Gwilliam, Reduction in interlaminar shear strength by discrete and distributed voids, Composites Science and Technology, vol. 56, pp.93-101, (1996).

DOI: 10.1016/0266-3538(95)00128-x

Google Scholar

[17] A. A. Goodwin, C. A. Howe, and R. J. Paton, The role of voids in reducing the interlaminar shear strength in RTM laminates, in Proceedings of ICCm-11, 1997, pp.11-19.

Google Scholar

[18] S. R. Ghiorse, Effect of void content on the mechanical properties of carbon/epoxy laminates, SAMPE Quarterly, vol. 24, pp.54-59, (1993).

Google Scholar