Preliminary Assessment of Genetic Diversity in Cultivated Glycyrrhiza uralensis, G. inflate and G. glabra by Chemical Fingerprint and Inter-Simple Sequence Repeat Markers

Article Preview

Abstract:

The two main secondary metabolites in Glycyrrhiza Species are Glycyrrhizic acid and liquiritin. They are considered as active ingredients . The content of these compounds showed variation in different species. Standard chemical fingerprints were generated from cultivated Glycyrrhiza uralensis, G. inflate and G. glabra, which could be identification markers. Five efficient inter-simple sequence repeat (ISSR) primers were screened and optimized for detecting the genetic diversity in three cultivated Glycyrrhiza uralensis, G. inflate and G. glabra. By using two characteristic peaks compare with three cultivars, Glycyrrhiza uralensis and G. glabra were bigger similarity than G. inflate. The results is in accordance with the results by ISSR markers. The higher genetic diversity in G. inflate was useful to more broad breeding. Our result suggest that provides an optimized method for assessment genetic diversity of cultivated Glycyrrhiza uralensis, G. inflate and G. glabra using Chemical fingerprint and ISSR markers which is useful for further investigation in breeding.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

1318-1325

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Huang, K.C., 1993. The Pharmacology of Chinese Herbs. CRC Press, Inc,Boca Raton, FL. p.275—278.

Google Scholar

[2] Anon, 2005. Glycyrrhiza glabra. Alternative Medicine Review 10, 230—237.

Google Scholar

[3] Shibano M,Kawase S. Nature Medicines, 2000,54: 70—74

Google Scholar

[4] Suzuki H, Ohta Y, Kakino T,et al. Asian Med J, 1983,26: 423—438

Google Scholar

[5] Cinatl J, Morgenstern B, Bauer G, et al. The Lancet, 2003, 361: 2045—(2046)

Google Scholar

[6] Taniguchi C, Homma M, Takano O, et al. Planta Med, 2000, 66: 607—611

Google Scholar

[7] Paterson A, Brubaker C, Wendel J. Plant Mol Biol Rep, 1993, 11: 122—127

Google Scholar

[8] Kimura M, Crow JF (1964) Genetics 49: 725—738

Google Scholar

[9] Nei M (1973) Proc Natl Acad Sci USA 70: 3321—3323. Doi: 10.1073/pnas. 70.12.3321

DOI: 10.1073/pnas.70.12.3321

Google Scholar

[10] Lewontin RC (1972) Evol Biol 6: 381—398

Google Scholar

[11] Blair MW, Panaud O, McCouch SR (1999) Theor Appl Genet 98: 780—792. doi: 10. 1007/s001220051135

Google Scholar

[12] Hao G, Lee DH, Lee JS, Lee NS (2002) Bot Bull Acad Sin 43: 63—68

Google Scholar

[13] Ruas PM, Ruas CF, Rampim L, Carvalho VP, Ruas FA, Sera T (2003) Genet Mol Biol 26: 319—327

DOI: 10.1590/s1415-47572003000300017

Google Scholar

[14] Wolfe AD, Xiang QY, Kephart SR (1998) Mol Ecol 7: 1107—1125

DOI: 10.1046/j.1365-294x.1998.00425.x

Google Scholar

[15] Yasodha R, Kathirvel M, Sumathi R, Gurumurthi K, Archak Sunil, Nagraju J (2004) Genetica 122:161 172

DOI: 10.1023/B:GENE.0000040938.13344.70

Google Scholar

[16] Gonzalez A, Coulson A, Brettell R (2002) Development of DNA markers (ISSRs) in mango. Acta Hortic 575:139--143

DOI: 10.17660/actahortic.2002.575.13

Google Scholar

[17] Lai JA, Yang WC, Hsiao JY (2001) Bot Bull Acad Sin 42:93–100

Google Scholar

[18] Hong YP, Kim MJ, Hong KN (2003) J Hortic Sci Biotechnol 78:350–354

Google Scholar

[19] Charters YM, Wilkinsion MJ (2000) Theor Appl Genet 100:160–166. doi:10.1007/ PL00002903

Google Scholar

[20] Fang DQ, Roose ML (1997) Theor Appl Genet 95:408–417

DOI: 10.1007/s001220050577

Google Scholar

[21] Moreno S, Martin JP, Oritz JM (1998) I Euphytica 101:117–125

DOI: 10.1023/A:1018379805873

Google Scholar

[22] He K., Pauli G. F., Zheng B. L., Wang H. K., Bai N. S., Peng T. S., Roller M., Zheng Q. Y., J. Chromatogr. A, 1112, 241—254 (2006).

Google Scholar