Effect of Salt on the Viscosity and Microstructure of Hydrophobically Associating Water-Soluble Polymer

Article Preview

Abstract:

The effects of Na+, Ca2+, and Mg2+ on hydrophobically associating water-soluble polymers (HAWP) were studied in this paper.Their decreased viscosity in aqueous solution at different salt concentrations were measured and the corresponding microstructure by Atomic Force Microscopy (AFM) were determined. The results show that the destructive microstrucure was the intrinsic reason for the decresed viscosity. Among the three salt aqueous solutins, CaCl2 has the highest strong destructive capability to the microstucute of HAWP.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

1673-1677

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.L. Valint, Jr.J. Bock, D.N. Schulz, in: Polymers in Aqueous Media: Performance through Association; edited by J.E. Glass, American Chemical Society: Washington DC (1989).

Google Scholar

[2] J. Bock, D.B. Siano, P.L. Valint, S.J. Pace: in Polymers in Aqueous Media: Performance through Association; edited by J.E. Glass, American Chemical Society: Washington, DC (1989).

DOI: 10.1021/ba-1989-0223.ch022

Google Scholar

[3] S. Biggs, J. Selb, F. Candau: Polymer Vol. 34 (1993), p.580

Google Scholar

[4] I. Lacik, J. Selb, F. Candau: Polymer Vol. 36 (1995), p.3197

Google Scholar

[5] C.L. McCormick, J.C. Middleton, D.F. Cummins: Macromolecules Vol. 25 (1992), p.1201

Google Scholar

[6] C.L. McCormick, J.C. Middleton, C.E. Grady: Polymer Vol. 33 (1992), p.4184

Google Scholar

[7] Y. Morishima, S. Nomura, T. Ikeda, M. Seki, M. Kamachi: Macromolecules Vol. 28 (1995), p.2874

Google Scholar

[8] J. Selb, S. Biggs, D. Renoux, F. Candau, in Hydrophilic Polymers: Performance with EnVironmental Acceptability; edited by J.E. Glass, American Chemical Society: Washington, DC (1996).

Google Scholar

[9] K.C. Tam, M.L. Farmer, R.D. Jenkins, D.R. Basset, J. Polym. Sci. B: Polym. Phys. Vol. 36 (1998), p.2275

Google Scholar

[10] T. Noda, A. Hashidzume, Y. Morishima: Langmuir Vol. 17 (2001), p.5984

Google Scholar

[11] T. Noda, A. Hashidzume, Y. Morishima: Macromolecules Vol. 34 (2001), p.1308

Google Scholar

[12] C. Tsitsilianis, I. Iliopoulos: Macromolecules Vol. 35 (2002), p.3662

Google Scholar

[13] L. Bromberg: Macromolecules Vol. 31 (1998), p.6148

Google Scholar

[14] M. Takahashi, M. Shimazaki, J. Yamamoto, J. Polym. Sci. B: Polym. Phys. Vol. 39 (2001), p.91

Google Scholar

[15] J. Cohen, Z. Priel, Y. Rabin: J. Chem. Phys. Vol. 88 (1998), p.11

Google Scholar

[16] L.M. Gan, K.W. Yeoh, C.H. Chew, L.L. Koh, T.L. Tan, J.Appl. Polym. Sci. Vol. 42 (1991), p.225

Google Scholar

[17] J. Yamanaka, H. Araie, H. Matsuoka, H. Kitano, N. Ise, T. Yamaguchi, S. Saeki, M. Tsubokawa: Macromolecules Vol. 24 (1991), p.3206

DOI: 10.1021/ma00011a025

Google Scholar

[18] J. Yamanaka, H. Araie, H. Matsuoka, H. Kitano, N. Ise,T. Yamaguchi, S. Saeki, M. Tsubokawa, Macromolecules Vol. 24 (1991), p.6156

DOI: 10.1021/ma00023a015

Google Scholar