An Efficient and Recyclable Imidazolium Salts-Functionalized Mesoporous Catalyst for Microwave-Promoted Knoevenagel Condensations in Solid Medium

Article Preview

Abstract:

A convenient method for the preparation of imidazolium salts-functionalized mesoporous catalyst Me-Bmim-SBA-15 (2) by postgrafting [bmIm]OH on SBA-15 was developed. This catalyst presented excellent catalytic activities (more than 96% yields for all tested aldehydes) for Knoevenagel condensation of aldehydes and ethyl cyanoacetate under microwave irradiation in solid medium. Of particular note is that such a catalyst could be readily recovered and reused in the consecutively catalytic runs (up to 10 uses) while maintained high catalytic activity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

1944-1948

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] (a) B.C. Ranu, R. Jana, S. Sowmiah, J. Org. Chem. Vol. 72 (2007), p.3152. (b) R.P. Shanthan, R.V. Venkataratnam, Tetrahedron Lett. Vol. 32 (1991), p.5821. (c) T. Saito, H. Goto, K. Honda, T. Fujii, Tetrahedron Lett. Vol. 33 (1992), p.7535.

Google Scholar

[2] (a) L. Martins, K.M. Vieira, L.M. Rios, D. Cardoso, Catalysis Today. Vol. 133-135 (2008), p.706. (b) H. Hattori, Chem. Rev. Vol. 95 (1995), p.537. (c) G.Q. Lai, J.J. Peng, J.Y. Li, H.Y. Qiu, J.X. Jiang, K.Z. Jiang, Y.J. Shen, Tetrahedron Lett. Vol. 47 (2006), p.6951. (d) M.I. Burguete, H. Erythropel, E. Garcia-Verdugo, S.V. Luis, V. Sans, Green Chem. Vol. 10 (2008), p.401.

DOI: 10.1039/b714977h

Google Scholar

[3] Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Chem. Rev. Vol. 106 (2006), p.896.

Google Scholar

[4] (a) L. Martins, W. Hőderich, P. Hammer, D. Cardoso, J. Catal. Vol. 271 (2010), p.220. (b) P. Han, H.M. Zhang, X.P. Qiu, X.L. Ji, L.X. Gao, J. Mol. Catal. A: Chem. Vol. 295 (2008), p.57.

Google Scholar

[5] (a) A.C. Gujar, M.G. White, Catalysis. Vol. 21 (2009), p.154. (b) V.I. Pârvulescu, and C. Hardacre, Chem. Rev. Vol. 107 (2007), p.2615.

Google Scholar

[6] Y. Liu, J.J. Peng, S.R. Zhai, J.Y. Li, J.J. Mao, M.J. Li, H.Y. Qiu, G.Q. Lai, Eur. J. Inorg. Chem. Vol. 15 (2006), p.2947.

Google Scholar

[7] D. Dallinger, C.O. Kappe, Chem. Rev. Vol. 107 (2007), p.2563.

Google Scholar

[8] K. Tanaka, F. Toda, Chem. Rev. Vol. 100 (2000), p.1025.

Google Scholar

[9] (a) G.H. Liu, Y. Gao, X.Q. Lu, M.M. Liu, F. Zhang, H.X. Li, Chem. Commun. Vol. 27 (2008), p.3184. (b) G.H. Liu, Y.Q. Sun, J.Y. Wang, C.S. Sun, F. Zhang, H.X. Li, Green Chem. Vol. 11 (2009), p.1477.

Google Scholar

[10] A. Bordoloi, S. Sahoo, F. Lefebvre, S.B. Halligudi, J. Catal. Vol. 259 (2008), p.232.

Google Scholar

[11] (a) B.C. Ranu, S. Banerjee, Org. Lett. Vol. 7 (2005), p.3049.

Google Scholar

[12] O. Krőcher, O.A. Kőppel, M. Frőba, A. Baiker, J. Catal. Vol. 178 (1998), p.284.

Google Scholar

[13] (a) P. Han, H.M. Zhang, X.P. Qiu, X.L.Ji. L.X. Gao, J. Mol. Catal. A: Chem. Vol. 295 (2008), p.57. (b) S. Udayakumar, H.L. Shim, V. Raman, D.W. Park, Micropor. Mesopor. Mat. Vol. 129 (2010), p.149.

Google Scholar

[14] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. Vol. 120 (1998), p.6024.

Google Scholar

[15] (a) R. Trotzki, M.M. Hoffmann, B. Ondruschka, Green Chem. Vol. 10 (2008), p.873. (b) M.D. Gracia, M.J. Jurado, R. Luque, J.M. Campelo, D. Luna, J.M. Marinas, A.A. Romero, Micropor. Mesopor. Mat. Vol. 118, (2009), p.87.

Google Scholar

[16] G.R. Krishnan, K. Sreekumar, Eur. J. Org. Chem. Vol. 28 (2008), p.4763.

Google Scholar