[1]
Prada R.B., Souza L. J. Voltage stability and thermal limit: constraints on the maximum loading of electrical energy distribution feeders. IEE Proceedings-Generation, Transmission and Distribution, Vol.145, No.5, (1998), pp.573-577.
DOI: 10.1049/ip-gtd:19982186
Google Scholar
[2]
Poul Sorensen, Nicolaos Antonio Cutululis, and Antonio Vigueras Rodriguez, et al. Power fluctuations from large wind farms. IEEE Tran. on Power Systems, Vol.22, No.3, (2007), pp.958-965.
DOI: 10.1109/tpwrs.2007.901615
Google Scholar
[3]
Vittal E, Keane A, O.Malley M. Varying penetration ratios of wind turbine technologies for voltage and frequency. IEEE Power & Energy Society Genral Meeting, Vol.1, No.1, (2008), pp.5491-5496.
DOI: 10.1109/pes.2008.4596402
Google Scholar
[4]
Kasem A.H., EI-Saadany E.F., EI-Tamaly H.H., et al. Ramp Rate Control and Voltage Regulation for Grid Directly Connected Wind Turbines. IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, (2008), pp.1-6.
DOI: 10.1109/pes.2008.4596329
Google Scholar
[5]
Yichun Wu, Ming Ding. Simulation study on voltage fluctuations and flicker caused by wind farms. Power System Technology, Vol.33, No.20, (2009), pp.125-130(in Chinese)
Google Scholar
[6]
Norden E. Huang, Zheng Shen, Steven R. Long. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society, Vol.454, (1998), pp.903-995.
DOI: 10.1098/rspa.1998.0193
Google Scholar
[7]
Y.L.Xu, M.ASCE, and J.Chen. Characterizing non-stationary wind speed using empirical mode decomposition. Journal of Structural Engineering, Vol.130, No.6, (2004), pp.912-920.
DOI: 10.1061/(asce)0733-9445(2004)130:6(912)
Google Scholar
[8]
Carolina Vilar Moreno, Hortensia Amaris Duarte, and Julio Usaola Garcia. Propagation of flicker in electric power networks due to wind energy conversions systems. IEEE Trans. on Energy Conversion, Vol.17, No.2, (2002), pp.267-272.
DOI: 10.1109/tec.2002.1009479
Google Scholar
[9]
Huang D J, Zhao I P, Su J L. Pracical implementation of Hilbert-Huang transform algorithm. Acta Oceanologica Sinica, Vol.22, No.1, (2003), pp.1-14.
Google Scholar
[10]
Hongyu Wang, Tianshuang Qiu, and Zhe Chen. Non-stationary random signal analysis and processing. National Defense Industry Press, Beijing,(2008).
Google Scholar
[11]
Yan Li, Yulei Luo, Buhan Zhang, Chengxiong Mao.A modified Newton-Raphson power flow method considering wind power. Asia-Pacific Power and Energy Engineering Conference, (2011), pp.1-5
DOI: 10.1109/appeec.2011.5748520
Google Scholar
[12]
Naser IS, Garba A, Anaya Lara O. Impact of wind generation on voltage stability in low-voltage distribution networks. Proceedings of the 44th International Universities Power Engineering Conference, Vol.9, (2009), pp.985-989
Google Scholar
[13]
G.B. Jasmon, Lee, L.H.C.C. New contingency ranking technique incorporating a voltage stability criterion. lEE Proceedings-Generation, Transmission and Distribution, Vol.140, No.2, (1993), pp.87-90
DOI: 10.1049/ip-c.1993.0012
Google Scholar
[14]
S. Papathanassiou, N. Hatziargyriou, K. Strunz. A benchmark low voltage microgrid network. Proceedings of the CIGRE Symposium: Power Systems with Dispersed Generation, Athensm, (2005), pp.1-8
Google Scholar
[15]
K. Rudion, Z.A. Styczynski, N.Hatziargyriou, et al. Development of benchmarks for low and medium voltage distribution networks with high penetration of dispersed generation. 3rd International Symposium on Modem Electric Power System, Wroclaw, (2006), pp.1-7
Google Scholar
[16]
Senjyu T, Sakamoto R, Kaneko T, et al. Output power leveling of wind farm using pitch angle control with fuzzy neural network. Electric Power Component and Systems, Vol.36, No.10, (2008), pp.1048-106
DOI: 10.1080/15325000802046637
Google Scholar
[17]
Guanglong Xie, Buhan Zhang, Jianghong Wang, et al. Research on the Propagation Characteristic of Non-stationary Wind Power in Microgrid Network Based on Empirical Mode Decomposition. International Conference on Power System Technology, (2010), pp.1-6
DOI: 10.1109/powercon.2010.5666046
Google Scholar