Potential for Biogas Production from Anaerobic Co-Digestion of Dairy and Chicken Manure with Corn Stalks

Article Preview

Abstract:

Anaerobic co-digestion of dairy manure, chicken manure with corn stalks were investigated at 15, 35 and 55 °C. Two trials were carried out, one based on co-digestion of dairy or chicken manure alone with corn stalks at ratios of 1:1, 2:1 and 3:1, the other based on co-digestion of dairy and chicken manure together with corn stalks on the premise of the optimal ratio between manure and stalks. In the first trial, the analysis based on the biogas and methane yields showed that co-digestion of dairy or chicken manure with corn stalks at 2:1 both had higher fermentabilities than other ratios. In the second trial, at 15 °C and 35 °C, various ratios of co-digestion of dairy and chicken manure together with corn stalks were all higher than co-digestion of two kinds of manure alone with corn stalks and maximum biogas and methane yields were obtained at the C/N ratios from 25 to 28. At 55 °C, only at the mixture ratios of 1.6:0.4:1, co-digestion of dairy and chicken manure together with corn stalks were higher than co-digestion of dairy manure with corn stalks, indicating the optimal C/N ratios from 28 to 30 in biogas and methane production. Based on regression analysis, maximum biogas and methane yields were found at 49.9 °C and 46.9 °C with the ratios of dairy, chicken manure and corn stalks at 1.14:0.86:1 and 0.74:1.26:1, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

2484-2492

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Li, X., Li, L. Q., Zheng, M. X.et al. Anaerobic co-digestion of cattle manure with corn stover pretreated by sodium hydroxide for efficient biogas production. Energy Fuels.Vol. 23(2009), P.4635-4639.

DOI: 10.1021/ef900384p

Google Scholar

[2] Ahring, B. K., Angelidaki,I., and Johansen,K. Anaerobic Treatment of Manure Together with Industrial Waste. Water Sci.Technol.Vol. 25(1992),p.311–318.

DOI: 10.2166/wst.1992.0163

Google Scholar

[3] Hartmann, H., and Ahring, B. K. Phthalic acid esters found in municipal organic waste: enhanced anaerobic degradation under hyper-thermophilic conditions. Water Sci.Technol. Vol. 48 (2003), pp.175-183.

DOI: 10.2166/wst.2003.0249

Google Scholar

[4] Parawira, W., Murto, M., Zvauya, R., and Mattiasson, B. Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renew. Energ.Vol. 29(2004),pp.1811-1823.

DOI: 10.1016/j.renene.2004.02.005

Google Scholar

[5] Agdag, O. N., and Sponza, D. T.Co-digestion of industrial sludge with municipal solid wastes in anaerobic simulated landfilling reactors. Process Biochem. Vol. 40(2005), pp.1871-1879.

DOI: 10.1016/j.procbio.2004.06.057

Google Scholar

[6] Fountoulakis, M. S., Drakopoulou, S., Terzakis, S., Georgaki, E., and Manios, T. Potential for methane production from typical Mediterranean agro-industrial by-products. Biomass Bioenergy. Vol. 32 (2008), pp.155-161.

DOI: 10.1016/j.biombioe.2007.09.002

Google Scholar

[7] Panichnumsin, P., Nopharatana, A., Ahring, B., and Chaiprasert, P. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass Bioenergy.Vol. 34(2010), pp.1117-1124

DOI: 10.1016/j.biombioe.2010.02.018

Google Scholar

[8] Banks, C. J., and Humphreys, P. N. The anaerobic treatment of a ligno-cellulosic substrate offering little natural pH buffering capacity. Water Sci. Technol.Vol. 38(1998), pp.29-35.

DOI: 10.2166/wst.1998.0574

Google Scholar

[9] Campos, E., Palatsi, J., Flotats, X. Co-digestion of pig slurry and organic wastes from food industry. In: Mata-Álvarez, J., Tilche, A., Cecchi, F. (Eds), Proceedings of the second international symposium on anaerobic digestion of solid waste. Barcelona, Spain (1999).

Google Scholar

[10] Hansen, K. H., Angelidaki, I., and Ahring, B. K. Anaerobic digestion of swine manure: Inhibition by ammonia. Water Res.Vol. 32(1998), pp.5-12.

DOI: 10.1016/s0043-1354(97)00201-7

Google Scholar

[11] Sung S. W., Liu T. Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere.Vol.53 (2003),pp.43-52.

DOI: 10.1016/s0045-6535(03)00434-x

Google Scholar

[12] Hills DJ, Roberts DW. Anaerobic digestion of dairy manure and field crop residues. Agric Wastes .Vol. 3 (1981),p.179–89.

DOI: 10.1016/0141-4607(81)90026-3

Google Scholar

[13] Hashimoto, A. G. Conversion of straw-Cmanure mixtures to methane at mesophilic and thermophilic temperatures. Biotechnol. Bioeng.Vol. 25(1983), pp.185-200.

DOI: 10.1002/bit.260250115

Google Scholar

[14] El-Mashad, H. M., and Zhang, R. H. Biogas production from co-digestion of dairy manure and food waste. Bioresour. Technol.Vol.101(2010,pp.4021-4028.

DOI: 10.1016/j.biortech.2010.01.027

Google Scholar

[15] Demirbas, A. Biogas potential of manure and straw mixtures. Energy Sources, Part a-Recovery Utilization and Environmental Effects .Vol.28(2006), pp.71-78.

DOI: 10.1080/009083190889672

Google Scholar

[16] Magbanua Jr, B. S., Adams, T. T., and Johnston, P. Anaerobic codigestion of hog and poultry waste. Bioresour. Technol.Vol. 76(2001), pp.165-168.

DOI: 10.1016/s0960-8524(00)00087-0

Google Scholar

[17] Misi, S., and Forster, C. Batch co-digestion of multi-component agro-wastes. Bioresour. Technol.Vol. 80( 2001), pp.19-28.

DOI: 10.1016/s0960-8524(01)00078-5

Google Scholar

[18] Alvarez, R., and Liden, G. Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renew. Energ.Vol, 33(2008), pp.726-734.

DOI: 10.1016/j.renene.2007.05.001

Google Scholar

[19] Li,Y.B., Yang, G.H., Chu, L.L., Chen, Y. Estimation of resource extent of dominant feedstock for household biogas in rural areas of China. Resources Science .Vol,31(2009), pp.231-237 (in Chinese).

Google Scholar

[20] APHA,. Standard Methods for the Examination of Water and Wastewater, 18th ed. American Public Health Association, Washington, DC, USA(1998).

Google Scholar

[21] Møller, H.B., Sommer, S.G., Ahring, B.K. Methane productivity of manure,straw and solid fractions of manure. Biomass Bioenergy.Vol. 26(2004),p.485–495.

DOI: 10.1016/j.biombioe.2003.08.008

Google Scholar

[22] Hashimoto AG. Conversion of straw–manure mixtures to methane at mesophilic and thermophilic temperatures.Biotechnol. Bioengy.Vol. 25(1983),p.185–200.

DOI: 10.1002/bit.260250115

Google Scholar

[23] Fischer JR, Iannotti EL, Fulhage CD. Production of methane gas from combinations of wheat straw and swine manure. Trans ASAE.Vol.26(1983),p.546–548.

DOI: 10.13031/2013.33976

Google Scholar

[24] Somayaji D, Khanna S. Biomethanation of rice and wheat straw.Microbiol.Biotechnol.Vol.10 (1994),p.521–3.

DOI: 10.1007/bf00367657

Google Scholar

[25] Chen, Y., Cheng, J.J., Creamer, K.S. Inhibition of anaerobic digestion process: a review. Bioresour. Technol.Vol. 99(2008), p.4044–4064.

DOI: 10.1016/j.biortech.2007.01.057

Google Scholar

[26] Mata-Alvarez, J., Macé and P. Llabrés,S. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol.Vol. 74(2000), pp.3-16.

DOI: 10.1016/s0960-8524(00)00023-7

Google Scholar

[27] Chen, G.Y., Zheng, Z., Zou, X.X.,et.al. 2009.Experiment on producing biogas by anaerobic co-digestion of cow feces and Spartina alterniflora. Transactions of the Chinese Society of Agricultural Engineering. Vol. 25(2009), pp.179-183 (in Chinese).

Google Scholar

[28] Salminen, E.,Rintala, J. Anaerobic digestion of organic solid poultry slaughterhouse waste – a review. Bioresour. Technol.Vol. 83(2002), p.13–26.

DOI: 10.1016/s0960-8524(01)00199-7

Google Scholar

[29] Kayhanian M. Ammonia inhibition in high-solidsbiogasiFcation: an overview and practical solutions.Environ.Technol.Vol. 20(1999),p.355–365.

Google Scholar

[30] Nielsen, H.B., Angelidaki, I. Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresour. Technol.Vol. 99(2008), p.7995–8001.

DOI: 10.1016/j.biortech.2008.03.049

Google Scholar

[31] Güngör-Demirci, G., Demirer, G.N. Effect of initial COD concentration, nutrient addition, temperature and microbial acclimation on anaerobic treatability of broiler and cattle manure. Bioresour. Technol.Vol. 93(2004), p.109–117.

DOI: 10.1016/j.biortech.2003.10.019

Google Scholar

[32] Bujoczek, G., Oleszkiewicz, J.A., Sparling, R.R., Cenkowski, S. High solid anaerobic digestion of chicken manure. J. Agric. Eng. Res.Vol. 76(2000), p.51–60.

DOI: 10.1006/jaer.2000.0529

Google Scholar

[33] Hobson, P.N., Bousfield, S., Summers, R., Mills, P.J. Anaerobic digestion of piggery and poultry wastes. In: Stafford, B.E., Wheatley, B.I., Hughes, D.E. (Eds.), Anaerobic digestion. Applied Science Publishers (1980).

Google Scholar

[34] Angelidaki, I., Ahring, B.K. Anaerobic thermophilic digestion of manure at different ammonia loads: Effect of temperature. Water Res.Vol.28 (1994), p.727–731.

DOI: 10.1016/0043-1354(94)90153-8

Google Scholar

[35] Hansen, H.H., Angelidaki, I., Ahring, B.K. Improving thermophilic anaerobic digestion of swine manure. Water. Res. Vol.33 (1999),p.1805–1810.

DOI: 10.1016/s0043-1354(98)00410-2

Google Scholar