Effect of the Calcination Temperature on the Catalyst Performance of ZrO2-Supported Cobalt for Fischer-Tropsch Synthesis

Article Preview

Abstract:

The effect of the calcination temperature on the catalyst performance of ZrO2-supported cobalt for Fischer-Tropsch synthesis is investigated. Results show that the size of the cobalt species particles of the ZrO2-supported cobalt catalysts increases and their reducibility is enhanced with increasing calcination temperature. In addition, the extent of CO linear absorption and bridge absorption peak increases and then decreases with increasing calcination temperature. The results from the Fishcer-Tropsch synthesis show that the CO conversion rate increases and then decreases as the calcination temperature is increased. Catalyst selectivity for C1 monotonically decreases, whereas that for C5+ increases. The changes in the CO conversion rate demonstrate a regularity consistent with the trend of the CO absorption peak extent. Meanwhile, the growth and enhanced reducibility of the cobalt species particles contribute to the generation of heavy hydrocarbons and explain the differences in product selectivity. Therefore, the appropriate calcination temperature facilitates an increase in the CO conversion rate of the ZrO2-supported cobalt catalysts and results in a better Fischer-Tropsch synthesis product selectivity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

3788-3793

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Li and X. Liu (In Chinese): J. Sou. Cent. Univ. National (Nat Sci Edition) Vol. 29 (2010), p.1

Google Scholar

[2] I. Puskas, T. H. Fleisch, J B Hall, B. L. Meyers and R. T. Roginski: J. Catal. Vol. 134 (1992), p.615

Google Scholar

[3] H. Ming and B. G. Baker: Appl. Catal. A Vol. 123 (1995), p.23

Google Scholar

[4] E. Van Steen, G. S. Sewell, R. A. Makhothe, C. Micklethwaite, H. Manstein, M. De Lange and C. T. O'Connor: J. Catal. Vol. 162 (1996), p.220

DOI: 10.1006/jcat.1996.0279

Google Scholar

[5] J. S. Girardon, A. S. Lermontov, L. Gengembre, P. A. Chernavskii, A. Griboval-Constant and A. Y. Khodakov: J. Catal. Vol. 230 (2005), p.339

Google Scholar

[6] J. S. Girardon, A. Constant-Griboval, L. Gengembre, P. A. Chernavskii and A. Y. Khodakov: Catal. Today Vol.106 (2005), p.161

DOI: 10.1016/j.cattod.2005.07.119

Google Scholar

[7] X. Dai , Ch.Yu and Sh. Shen (In Chinese): Chin. J. Catal. Vol. 21 (2000), p.161

Google Scholar

[8] H. Gao, H. Xiang and Y. Li (In Chinese): Chin. J. Catal. Vol. 31 (2010), p.307

Google Scholar

[9] A. Y. Khodakov, A. Griboval-Constant, R. Bechara, V. L. Zholobenko: J. Catal. Vol. 206 (2002), p.230

Google Scholar

[10] B. Ernst, S. Libs, P. Chaumette and A. Kiennemann: Appl. Catal. A Vol. 186 (1999), p.145

Google Scholar

[11] N. Tsubaki, Y. Zhang, S. Sun, H. Mori, Y. Yoneyama, X. Li and K. Fujimoto: Catal. Commun. Vol. 2 (2001), p.311

Google Scholar

[12] H. Zhao, J. Chen and Y. Sun (In Chinese): Chin. J. Catal. Vol. 24 (2003), p.933

Google Scholar

[13] Q. Tang, Q. Zhang, P. Wang, Y. Wang and H. Wan: Chem. Mater. Vol. 16 (2004), p.(1967)

Google Scholar

[14] J. L. Zhang, J. G. Chen, J. Ren, Y. W. Li and Y. H. Sun: Fuel Vol. 82 (2003), p.581

Google Scholar

[15] J. L. Zhang, J. G. Chen, J. Ren and Y. H. Sun: Appl. Catal. A Vol. 243 (2003), p.121

Google Scholar

[16] S. L. Sun, N. Tsubaki and K. Fujimoto: Appl. Catal. A Vol. 202 (2000), p.121

Google Scholar