[1]
Basheer, L., J. Kropp, et al. (2001). "Assessment of the durability of concrete from its permeation properties: a review." Construction and Building Materials, 15(2-3): 93-103.
DOI: 10.1016/s0950-0618(00)00058-1
Google Scholar
[2]
Jiang, L., Z. Liu, et al. (2004). "Durability of concrete incorporating large volumes of low-quality fly ash." Cement and Concrete Research, 34(8): 1467-1469.
DOI: 10.1016/j.cemconres.2003.12.029
Google Scholar
[3]
Sisomphon, K. and L. Franke (2007). "Carbonation rates of concretes containing high volume of pozzolanic materials." Cement and Concrete Research, 37(12): 1647-1653.
DOI: 10.1016/j.cemconres.2007.08.014
Google Scholar
[4]
Castellote, M., C. Andrade, et al. (2008). "Accelerated carbonation of cement pastes in situ monitored by neutron diffraction." Cement and Concrete Research, 38(12): 1365-1373.
DOI: 10.1016/j.cemconres.2008.07.002
Google Scholar
[5]
Malami, C., V. Kaloidas, et al. (1994). "Carbonation and porosity of mortar specimens with pozzolanic and hydraulic cement admixtures." Cement and Concrete Research, 24(8): 1444-1454.
DOI: 10.1016/0008-8846(94)90158-9
Google Scholar
[6]
Papadakis, V. G. (2000). "Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress." Cement and Concrete Research, 30(2): 291-299.
DOI: 10.1016/s0008-8846(99)00249-5
Google Scholar
[7]
Atis, C. D. (2003). "Accelerated carbonation and testing of concrete made with fly ash." Construction and Building Materials, 17(3): 147-152.
DOI: 10.1016/s0950-0618(02)00116-2
Google Scholar
[8]
Sideris, K. K., A. E. Savva, et al. (2006). "Sulfate resistance and carbonation of plain and blended cements." Cement and Concrete Composites, 28(1): 47-56.
DOI: 10.1016/j.cemconcomp.2005.09.001
Google Scholar
[9]
Haque, M. N. and O. Kayali (1998). "Properties of high-strength concrete using a fine fly ash." Cement and Concrete Research, 28(10): 1445-1452.
DOI: 10.1016/s0008-8846(98)00125-2
Google Scholar
[10]
Atis, C. D., A. Kilic, et al. (2004). "Strength and shrinkage properties of mortar containing a nonstandard high-calcium fly ash." Cement and Concrete Research, 34(1): 99-102.
DOI: 10.1016/s0008-8846(03)00247-3
Google Scholar
[11]
Chindaprasirt, P., S. Homwuttiwong, et al. (2004). "Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar." Cement and Concrete Research, 34(7): 1087-1092.
DOI: 10.1016/j.cemconres.2003.11.021
Google Scholar
[12]
Tertnkhajornkit, P., T. Nawa, et al. (2005). "Effect of fly ash on autogenous shrinkage." Cement and Concrete Research, 35(3): 473-482.
DOI: 10.1016/j.cemconres.2004.07.010
Google Scholar
[13]
Mo, L. W. and M. Deng (2006). "Thermal behavior of cement matrix with high-volume mineral admixtures at early hydration age." Cement and Concrete Research, 36(10): 1992-1998.
DOI: 10.1016/j.cemconres.2006.07.002
Google Scholar
[14]
Fu, Y., P. Gu, et al. (1995). "Effect of chemical admixtures on the expansion of shrinkage-compensating cement containing a pre-hydrated high alumina cement -- based expansive additive." Cement and Concrete Research, 25(1): 29-38.
DOI: 10.1016/0008-8846(94)00109-c
Google Scholar
[15]
Yan, P. Y. and X. Qin (2001). "The effect of expansive admixture and possibility of delayed ettringite formation in shrinkage-compensating massive concrete." Cement and Concrete Research, 31(2): 335-337.
DOI: 10.1016/s0008-8846(00)00453-1
Google Scholar
[16]
Collepardi, M., A. Borsoi, et al. (2005). "Effects of shrinkage reducing admixture in shrinkage compensating concrete under non-wet curing conditions." Cement and Concrete Composites, 27(6): 704-708.
DOI: 10.1016/j.cemconcomp.2004.09.020
Google Scholar
[17]
TC56-MHM hydrocarbon materials (1988). CPC-18 Measurement of hardened concrete carbonation depth. RILEM RECOMMENDATIONS.
Google Scholar
[18]
Chang, C.-F. and J.-W. Chen (2006). "The experimental investigation of concrete carbonation depth." Cement and Concrete Research, 36(9): 1760-1767.
DOI: 10.1016/j.cemconres.2004.07.025
Google Scholar