Preparation of Spherical FePO4 Cathode Material for Lithium Ion Batteries

Article Preview

Abstract:

The spherical FePO4 was prepared by a novel co-precipitation process followed by spray drying method, using Fe (NO3)3•9H2O, NH4H2PO4, NH3•H2O and polyvinyl alcohol. The pH value plays a pivotal role in determining the morphology of spherical particles; the sample, obtained at pH=3, was found to have the ideal spherical particles and electrochemical property. The X-ray diffraction analysis showed the phase transition of FePO4 with calcining temperature, amorphous FePO4 can exhibit better performance than the crystalline phase. Electrochemical behavior of spherical FePO4 was studied by the charge-discharge tests and electrochemical impedance spectroscopy. The results show that this process is a promising method to prepare spherical FePO4cathode materials for lithium ion batteries.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

576-581

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] PingTang, N.A.W. Holzwarth: J. Physical Review B. Vol. 16 (2003), P. 68

Google Scholar

[2] Z. C. Shi, A. Attia, W. L. Ye et al.: J. Electrochim.Acta. Vol. 53 (2008), P. 2665

Google Scholar

[3] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier et al.: J. Electrochem. Soc. Vol. 144 (1997), P.1609

Google Scholar

[4] Jouanneau S, Dahn JR: J. Electrochem.Soc.Vol.151 (2004), P. A1749

Google Scholar

[5] Sun YK, Myung ST, Kim MH et al.: J. Electrochem. Solid-State Lett. Vol. 9 (2006), P. A171

Google Scholar

[6] Xiang Ming He, Jian Jun Li, Yan Cai et al.: J. Solid State Electrochemistry. Vol. 9 (2006), P. 438

Google Scholar

[7] Zhaorong Chang, Zhongjun Chen, Feng Wu et al.: J. Electrochem. Solid-State Lett. Vol. 11 (2008), P. A229

Google Scholar

[8] Guerfi A, Sevigny S, Lagace M et al.: J. Power Sources. Vol. 119 (2003), P. 88

Google Scholar

[9] Cho TH, Park SM, Yoshio M et al.: J. Power Sources. Vol. 142 (2005), P. 306

Google Scholar

[10] Jian Gao, Jierong Ying, Changyin Jiang et al.: J. Ionics. Vol. 15 (2009), P. 597

Google Scholar

[11] Jiangang Li, Xiangming He, Maosong Fan et al.: J. Ionics. Vol. 12 (2006), P. 77

Google Scholar

[12] Liu Z Q, Wang W L, Liu X M et al.: J. Solid State Chem. Vol. 177 (2004), P. 1585

Google Scholar

[13] Haowen Liu: J. Nanoparticle Research. Vol. 12 (2010), P. (2003)

Google Scholar

[14] Jin Gao, Changyin Jiang, Chunrong Wan: J. Ionics. Vol. 16 (2010), P. 417

Google Scholar

[15] Li Liu, FanghuaTian, Xingyan Wang et al.: J. Solid State Elec., (2010)

Google Scholar

[16] J. C. Oxley, M. Hiskey, D. Naud, R. Szekeres: J. Phys. Chem. Vol. 2505 (1992), P. 96

Google Scholar

[17] N. Rajic, R. Gabrovsek, and V.K.aucic: J.Thermochimcaacta. Vol. 359 (2000), P. 119

Google Scholar

[18] Shoufeng Yang et al.: J, Electrochemistry. Vol. 239 (2002), P. 4

Google Scholar

[19] Hirokazu Okawa, Junpei Yabuki, Youhei Kawamura et al.:J. Mater. Res. Bull. Vol. 43 (2008), P. 1203

Google Scholar

[20] Yanning Song, Shoufeng Yang, Peter Y. Zavalij et al.: J. Mater. Res. Bull. Vol. 37 (2002), P. 1249

Google Scholar

[21] Y. Song, P.Y. Zavalij, M. Suzuki et al.: J. Inorg. Chem. Vol. 41 (2002), P. 5778

Google Scholar